Skip to main content

Calorimetry for Enteral Feeding in Critically Ill Patients

  • Reference work entry
  • First Online:
Diet and Nutrition in Critical Care
  • 168 Accesses

Abstract

The nutritional assessment is important in a critically ill patient to improve the outcome. In clinical practice, the patients’ energy needs may be assessed by predictive equations or measured by indirect calorimetry. Predictive equations do not provide true values because of various confounders and interindividual variation and thus requires its cautious use. Indirect calorimetry has emerged as a gold standard assessment tool and can easily be performed in a critical care setup. Optimal nutrition intervention requires continuous evaluation of all pertinent clinical data and monitoring of each patient’s response to metabolic stress and therapeutic nutrition interventions. A thorough understanding of the variables associated with indirect calorimetry measurements and what circumstances can confound results can help optimize patient care and minimize confusing or erroneous interpretation. Clinical judgment should be used to individualize each patient’s estimated caloric needs. The frequent monitoring and evaluation of nutrition interventions should occur to make adjustments as needed based on patient response. This chapter focuses on the useful role of indirect calorimetry in critically ill patients for nutrition optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

°F:

Degree Fahrenheit

FiO2:

Fraction of inspired oxygen concentration

REE:

Resting energy expenditure

RQ:

Respiratory quotient

VCO2:

Carbon dioxide production in mL/min

VO2:

Oxygen consumption in mL/min

References

  • Askanazi J, Carpentier YA, Elwyn DH, et al. Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg. 1980a;191:40–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Askanazi J, Rosenbaum SH, Hyman AI, Silverberg PA, Milic-Emili J, Kinney JM. Respiratory changes induced by the large glucose loads of total parenteral nutrition. JAMA. 1980b;243:1444–7.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett RH. Oxygen kinetics and the art of physiological monitoring. J Crit Care. 1993;8:77–9.

    Article  CAS  PubMed  Google Scholar 

  • Bassili HR, Deitel M. Effect of nutritional support on weaning patients off mechanical ventilators. J Parenter Enteral Nutr. 1981;5:161–3.

    Article  CAS  Google Scholar 

  • Behrendt W, Surmann M, Raumanns J, Giani G. How reliable are short-term measurements of oxygen uptake in polytraumatized and long-term ventilated patients? Infusionstherapie. 1991;18:20–4.

    CAS  PubMed  Google Scholar 

  • Benedict FG. A portable respiration apparatus for clinical use. Boston Med Surg J. 1918;178:667–8.

    Article  CAS  Google Scholar 

  • Berger MM, Chiolero RL, Pannatier A, Cayeux MC, Tappy L. A 10-year survey of nutritional support in a surgical ICU: 1986–1995. Nutrition. 1997;13:870–7.

    Article  CAS  PubMed  Google Scholar 

  • Bishop M, Benson MS, Pierson DJ. Carbon dioxide excretion via bronchopleural fistulas in adult respiratory distress syndrome. Chest. 1987;91:400–4.

    Article  CAS  PubMed  Google Scholar 

  • Brandi LS, Bertolini R, Calafa M. Indirect calorimetry in critically ill patients: clinical applications and practical advice. Nutrition. 1997;13:349–58.

    Article  CAS  PubMed  Google Scholar 

  • Brandi LS, Bertolini R, Santini L, Cavani S. Effects of ventilator resetting on indirect calorimetry measurement in the critically ill surgical patient. Crit Care Med. 1999;27:531–9.

    Article  CAS  PubMed  Google Scholar 

  • Branson RD. The measurement of energy expenditure: instrumentation, practical considerations and clinical application. Respir Care. 1990;35:640–56.

    Google Scholar 

  • Branson RD. Technical aspects of metabolic measurements. Nutrition. 1995;11:176.

    CAS  PubMed  Google Scholar 

  • Brown RO, Campher C. ASPEN clinical guidelines: nutrition support in adult acute and chronic renal failure. JPEN J Parenter Enteral Nutr. 2010;34:366–77.

    Article  PubMed  Google Scholar 

  • Browning JA, Linberg SE, Turney SZ, Chodoff P. The effects of a fluctuating FIO2 on metabolic measurements in mechanically ventilated patients. Crit Care Med. 1982;10:82–5.

    Article  CAS  PubMed  Google Scholar 

  • Burge JC, Goon A, Choban PS, Flancbaum L. Efficacy of hypocaloric total parenteral nutrition in hospitalized obese patients: a prospective, double-blind randomized trial. JPEN J Parenter Enteral Nutr. 1994;18:203–7.

    Article  CAS  PubMed  Google Scholar 

  • Cerra FB. Hypermetabolism, organ failure and metabolic support. Surgery. 1987;101:1–14.

    CAS  PubMed  Google Scholar 

  • Cunningham KF, Aeberhardt LE, Wiggs BR, Phang PT. Appropriate interpretation of indirect calorimetry for determining energy expenditure in intensive care units. Am J Surg. 1994;167:54–7.

    Article  Google Scholar 

  • Daly JM, Heymsfield SB, Head CA, et al. Human energy requirements: overestimation by widely used prediction equation. Am J Clin Nutr. 1985;42:1170–4.

    CAS  PubMed  Google Scholar 

  • Dark DS, Pingeton SK, Kergy GR. Hypercapnia during weaning: a comparison of nutritional support. Chest. 1985;88:141–3.

    Article  CAS  PubMed  Google Scholar 

  • de Weir JB. A new method for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109:1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dechert RE, Wesley JR, Schafer LE, LaMond S, Nicks J, Coran AG, Bartlett RH. A water-sealed indirect calorimeter for measurement of oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure in infants. J Parenter Enteral Nutr. 1988;12:256–9.

    Article  CAS  Google Scholar 

  • Dokken M, Rustøen T, Stubhaug A. Indirect calorimetry reveals that better monitoring of nutrition therapy in pediatric intensive care is needed. J Parenter Enteral Nutr. 2013. doi:10.1177/0148607113511990.

    Google Scholar 

  • Fahri LE, Rahn H. Gas stores of body and unsteady state. J Appl Physiol. 1955;7:472–9.

    Google Scholar 

  • Fiser RT, Torres A, Holt S, Wilson S, Hewlitt MS. Isolation valve increases work of breathing in a mechanically ventilated pediatric animal model. Respir Care. 1997;42:688–92.

    Google Scholar 

  • Flancbaum L, Choban PS, Sambucco S, Verducci J, Burge JC. Comparison of indirect calorimetry, the fick method, and prediction equations in estimating the energy requirements of critically ill patients. Am J Clin Nutr. 1999;69:461–6.

    CAS  PubMed  Google Scholar 

  • Frankenfield DC, Sarson GY, Blosser SA, Cooney RN, Smith JS. Validation of a 5-minute steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients. J Am Coll Nutr. 1996;15:397–402.

    Article  CAS  PubMed  Google Scholar 

  • Halmagyi DFJ, Kinney JM. Metabolic rate in active respiratory failure complicating sepsis. Surgery. 1975;77:492–9.

    CAS  PubMed  Google Scholar 

  • Head CA, Grossman GD, Jordan JC, Hepler EL, Heymsfield SB. A valve system for the accurate measurement of energy expenditure in mechanically ventilated patients. Respir Care. 1985;30:969–73.

    Google Scholar 

  • Heneghan CPH, Gilbe CE, Branthwaite MA. Measurement of metabolic gas exchange during anesthesia. Br J Anaesth. 1981;53:73–81.

    Article  CAS  PubMed  Google Scholar 

  • Henneberg S, Soderberg D, Groth T, Stjernsrom H, Wiklund L. Carbon dioxide production during mechanical ventilation. Crit Care Med. 1987;15:8–12.

    Article  CAS  PubMed  Google Scholar 

  • Holdy KE. Monitoring energy metabolism with indirect calorimetry: instruments, interpretation, and clinical application. Nutr Clin Pract. 2004;19:447–54.

    Article  PubMed  Google Scholar 

  • Hulst JM, Van Goudoever JB, Zimmermann LJ, Hop WC, Büller HA, Tibboel D, Joosten KFM. Adequate feeding and the usefulness of the respiratory quotient in critically ill children. Nutrition. 2005;21:192–8.

    Article  PubMed  Google Scholar 

  • Hunter DC, Jaksie T, Lewis D, Benotti PN, Blackburn GL, Bistrian BR. Resting energy expenditure in the critically ill: estimates versus measurement. Br J Surg. 1988;75:875–8.

    Article  CAS  PubMed  Google Scholar 

  • Jolliet P, Pichard C, Biolo G, et al. Enteral nutrition in intensive care patients: a practical approach. Working Group on Nutrition and Metabolism, ESICM. European Society of Intensive Care Medicine. Intensive Care Med. 1998;24:848–59.

    Article  CAS  PubMed  Google Scholar 

  • Kemper MS. Indirect calorimetry equipment and practical considerations of measurement. In: Weissman C, editor. Problems in respiratory care: nutrition and respiratory disease, vol. 2. Philadelphia: JB Lippincott; 1989. p. 479–90.

    Google Scholar 

  • Klein CJ, Stanek GS, Wiles CE. Overfeeding macronutrients to critically ill adults: metabolic complications. J Am Diet Assoc. 1998;98:795–806.

    Article  CAS  PubMed  Google Scholar 

  • Kocache RMA, Swan J, Holman DF. A miniature rugged and accurate solid electrolyte oxygen sensor. J Phys Environ Sci Instrum. 1984;17:477–82.

    Article  CAS  Google Scholar 

  • Larca L, Greenbaum DM. Effectiveness of intensive nutritional regimes in patients who fail to wean from mechanical ventilation. Crit Care Med. 1982;10:297–300.

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Auyeung TW. A comparison of two feeding methods in the alleviation of diarrhoea in older tube-fed patients: a randomized controlled trial. Age Ageing. 2003;32:388–93.

    Article  PubMed  Google Scholar 

  • Lowrey T, Dunlap A, Brown R, Dickerson R, Kudsk K. Pharmacologic influence on nutrition support therapy: use of propofol in a patient receiving combined enteral and parenteral nutrition support. Nutr Clin Pract. 1996;11:147–9.

    Article  CAS  PubMed  Google Scholar 

  • Mann S, Westenshow DR, Hontchens BA. Measured and predicted caloric expenditure in the acutely ill. Crit Care Med. 1985;13:173–7.

    Article  CAS  PubMed  Google Scholar 

  • Matarese LE. Indirect calorimetry: technical aspects. J Am Diet Assoc. 1997;10 Suppl 2:S154–60.

    Article  Google Scholar 

  • McClave SA, Snider HL. Understanding the metabolic response to critical illness: factors that cause patients to deviate from the expected pattern of hypermetabolism. New Horiz. 1994;2:139–46.

    CAS  PubMed  Google Scholar 

  • McClave SA, Lowen CC, Kleber MJ, Nicholson JF, Jimmerson SC, McConnell JW, Jung LY. Are patients fed appropriately according to their caloric requirements? JPEN J Parenter Enteral Nutr. 1988;22:375–81.

    Article  Google Scholar 

  • McClave SA, Lowen CC, Kleber MJ, et al. Is the respiratory quotient a useful indicator of over-or under- feeding? JPEN J Parenter Enteral Nutr. 1997;21:S11 (abstract 66).

    Article  Google Scholar 

  • McClave SA, McClain CJ, Snider HL. Should indirect calorimetry be used as part of nutritional assessment? J Clin Gastroenterol. 2001;33:14–9.

    Article  CAS  PubMed  Google Scholar 

  • McClave SA, Lowen CC, Kleber MJ, McConnell JW, Jung LY, Goldsmith LJ. Clinical use of the respiratory quotient obtained from indirect calorimetry. JPEN J Parenter Enteral Nutr. 2003;27:21–6.

    Article  PubMed  Google Scholar 

  • Nacht CA, Schutz Y, Vernet O, Christin L, Jequier E. Continuous versus single bolus enteral nutrition: comparison of energy metabolism in humans. Am J Physiol. 1986;251:524–9.

    Google Scholar 

  • Ochoa JB, Magnuson B, Swintowsky M, et al. Long-term reduction in the cost of nutritional intervention achieved by a nutrition support service. Nutr Clin Pract. 2000;15:174–80.

    Article  Google Scholar 

  • Petros S, Engelmann L. Validity of an abbreviated indirect calorimetry protocol for measurement of resting energy expenditure in mechanically ventilated and spontaneously breathing critically ill patients. Intensive Care Med. 2001;27:1164–8.

    Article  CAS  PubMed  Google Scholar 

  • Petros S, Engelmann L. Enteral nutrition delivery and energy expenditure in medical intensive care patients. Clin Nutr. 2006;25:51–9.

    Article  PubMed  Google Scholar 

  • Porter C, Cohen NH. Indirect calorimetry in critically ill patients: role of the clinical dietitian in interpreting results. J Am Diet Assoc. 1996;96:49–57.

    Article  CAS  PubMed  Google Scholar 

  • Saffle JR, Larson CM, Sullivan J. A randomized trial of indirect calorimetry-based feedings in thermal injury. J Trauma. 1990;30:776–82.

    Article  CAS  PubMed  Google Scholar 

  • Sion-Sarid R, Cohen J, Houri Z, Singer P. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child. Nutrition. 2013;29:1094–9.

    Article  PubMed  Google Scholar 

  • Smyrnios NA, Curley FJ, Shaker KG. Accuracy of 30-minute indirect calorimetry studies in predicting 24- hour energy expenditure in mechanically ventilated, critically ill patients. JPEN J Parenter Enteral Nutr. 1997;21:168–74.

    Article  CAS  PubMed  Google Scholar 

  • Ultman JS, Bursztein S. Analysis of error in the determination of respiratory gas exchange at varying FIO2. J Appl Physiol. 1981;50:210–6.

    CAS  PubMed  Google Scholar 

  • Van der Kuip M, de Meer K, Oosterveld MJ, Lafeber HN, Gemke RJ. Simple and accurate assessment of energy expenditure in ventilated paediatric intensive care patients. Clin Nutr. 2004;23:657–63.

    Article  PubMed  Google Scholar 

  • Walsh TS. Recent advances in gas exchange measurements in intensive care patients. Br J Anaesth. 2003;91:120–31.

    Article  CAS  PubMed  Google Scholar 

  • Weissman C. Measuring oxygen uptake in the clinical setting. In: Bryan-Brown CW, Ayres SM, editors. Oxygen transport and utilization. Fullerton: Society of Critical Care Medicine; 1987. p. 25–64.

    Google Scholar 

  • Weissman C, Kemper MC, Damask M, Askanazi J, Hyman AI, Kinney JM. The effect of routine intensive care interactions on metabolic rate. Chest. 1984;86:815–8.

    Article  CAS  PubMed  Google Scholar 

  • Wooley JA, Sax HC. Indirect calorimetry: applications to practice. Nutr Clin Pract. 2003;18:434–8.

    Article  PubMed  Google Scholar 

  • Zijlstra N, ten Dam SM, Hulshof PJ, Ram C, Hiemstra G, de Roos NM. 24-hour indirect calorimetry in mechanically ventilated critically ill patients. Nutr Clin Pract. 2007;22:250–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Garg, R., Maurya, I. (2015). Calorimetry for Enteral Feeding in Critically Ill Patients. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7836-2_161

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7836-2_161

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7837-9

  • Online ISBN: 978-1-4614-7836-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics