Stochastic Change-Point Models of Asset Returns and Their Volatilities

  • Tze Leung Lai
  • Haipeng Xing
Reference work entry


We begin with an overview of frequentist and Bayesian approaches to incorporating change points in time series models of asset returns and their volatilities. It has been found in many empirical studies of stock returns and exchange rate that ignoring the possibilities of parameter changes yields time series models with long memory, such as unit-root nonstationarity and high volatility persistence. We therefore focus on the ARX-GARCH model and introduce two timescales, using the “short” timescale to define GARCH dynamics and the “long” timescale to incorporate parameter jumps. This leads to a Bayesian change-point ARX-GARCH model, whose unknown parameters may undergo occasional changes at unspecified times and can be estimated by explicit recursive formulas when the hyperparameters of the Bayesian model are specified. We describe efficient estimators of the hyperparameters of the Bayesian model leading to empirical Bayes estimators of the piecewise constant parameters with relatively low computational complexity. We also show how the computationally tractable empirical Bayes approach can be applied to the frequentist problem of partitioning the time series into segments under sparsity assumptions on the change points.


ARX-GARCH Bounded complexity Contemporaneous jumps Change-point models Empirical Bayes Frequentist segmentation Hidden Markov models Hyperparameter estimation Markov chain Monte Carlo Recursive filters Regression models Stochastic volatility 


  1. Albert, J. H., & Chib, S. (1993). Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. Journal of Business and Economic Statistics, 11, 1–15.Google Scholar
  2. Andrews, D. W. K., Lee, I., & Ploberger, W. (1996). Optimal changepoint tests for normal linear regression. Journal of Econometrics, 70, 9–36.CrossRefGoogle Scholar
  3. Bai, J. (1997). Estimation of a changepoint in multiple regression models. Review of Economics and Statistics, 79, 551–563.CrossRefGoogle Scholar
  4. Bai, J. (1999). Likelihood ratio tests for multiple structural changes. Journal of Econometrics, 91, 299–323.CrossRefGoogle Scholar
  5. Bai, J., & Perron, P. (1998). Testing for and estimation of multiple structural changes. Econometrica, 66, 817–858.CrossRefGoogle Scholar
  6. Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18, 1–22.CrossRefGoogle Scholar
  7. Bai, J., Lumsdaine, R., & Stock, J. H. (1998). Testing for and dating common breaks in multivariate time series. The Review of Economic Studies, 65, 395–432.CrossRefGoogle Scholar
  8. Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74, 3–30.CrossRefGoogle Scholar
  9. Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. Journal of Finance, 52, 2003–2049.CrossRefGoogle Scholar
  10. Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options. Review of Financial Studies, 9, 69–107.CrossRefGoogle Scholar
  11. Bates, D. S. (2000). Post-87 crash fears in the s&p 500 futures option market. Journal of Econometrics, 94, 181–238.CrossRefGoogle Scholar
  12. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.CrossRefGoogle Scholar
  13. Broadie, M., Chernov, M., & Johannes, M. (2007). Model specification and risk premia: Evidence from futures options. Journal of Finance, 62, 1453–1490.CrossRefGoogle Scholar
  14. Cai, J. (1994). A Markov model of switching-regime ARCH. Journal of Business and Economic Statistics, 12, 309–316.Google Scholar
  15. Chernoff, H., & Zacks, S. (1964). Estimating the current mean of a normal distribution which is subjected to change in time. The Annals of Mathematical Statistics, 35, 999–1018.CrossRefGoogle Scholar
  16. Diebold, F. X. (1986). Comment on modeling the persistence of conditional variance. Econometric Reviews, 5, 51–56.CrossRefGoogle Scholar
  17. Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68, 1343–1376.CrossRefGoogle Scholar
  18. Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of variance of United Kingdom inflation. Econometrica, 50, 987–1008.CrossRefGoogle Scholar
  19. Engle, R. F., & Bollerslev, T. (1986). Modeling the persistence of conditional variances. Econometric Reviews, 5, 1–50.CrossRefGoogle Scholar
  20. Engle, R. F., & Mezrich, J. (1996). GARCH for groups. Risk, 1996, 36–40.Google Scholar
  21. Engle, R. F., & Rangel, J. G. (2008). The spline-GARCH models for low-frequency volatility and its global macroeconomic causes. Review of Financial Studies, 21, 1187–1222.CrossRefGoogle Scholar
  22. Eraker, B., Johannes, M. S., & Polson, N. G. (2003). The impact of jumps in returns and volatility. Journal of Finance, 53, 1269–1300.CrossRefGoogle Scholar
  23. Goldfeld, S. M., & Quandt, R. E. (1973). A Markov model for switching regressions. Journal of Econometrics, 1, 3–16.CrossRefGoogle Scholar
  24. Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42, 27–62.CrossRefGoogle Scholar
  25. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57, 357–384.CrossRefGoogle Scholar
  26. Hamilton, J. D. (1990). Analysis of time series subject to changes in regimes. Journal of Econometrics, 45, 39–70.CrossRefGoogle Scholar
  27. Hamilton, J. D., & Susmel, R. (1994). A conditional heteroskedasticity and change in regime. Journal of Econometrics, 64, 307–333.CrossRefGoogle Scholar
  28. Heston, S. (1993). A closed-form solutions for options with stochastic volatility. Review of Financial Studies, 6, 327–343.CrossRefGoogle Scholar
  29. Lai, T. L., & Xing, H. (2008). Statistical models and methods for financial markets. New York: Springer.CrossRefGoogle Scholar
  30. Lai, T. L., & Xing, H. (2010). Time series modeling and forecasting of volatilities of asset returns. In C. F. Lee, A. C. Lee, & J. Lee (Eds.), Handbook of quantitative finance and risk management (pp. 1417–1426). New York: Springer.CrossRefGoogle Scholar
  31. Lai, T. L., & Xing, H. (2011). A simple Bayesian approach to multiple change-points. Statistica Sinica, 21, 539–569.CrossRefGoogle Scholar
  32. Lai, T. L., & Xing, H. (2013). Stochastic change-point ARX-GARCH models and their applications to econometric time series. Statistica Sinica, 23, 1573–1594.Google Scholar
  33. Lai, T. L., Liu, H., & Xing, H. (2005). Autoregressive models with piecewise constant volatility and regression parameters. Statistica Sinica, 15, 279–301.Google Scholar
  34. Lamoureux, C. G., & Lastrapes, W. D. (1990). Persistence in variance, structural change and the GARCH model. Journal of Business and Economic Statistics, 8, 225–234.Google Scholar
  35. McCulloch, R. E., & Tsay, R. S. (1993). Bayesian inference and prediction for mean and variance shifts in autoregressive time series. Journal of the American Statistical Association, 88, 968–978.CrossRefGoogle Scholar
  36. Perron, P. (1989). The great crash, the oil price shock and the unit root hypothesis. Econometrica, 57, 1361–1401.CrossRefGoogle Scholar
  37. Qu, Z., & Perron, P. (2007). Estimating and testing structural changes in multivariate regressions. Econometrica, 75, 459–502.CrossRefGoogle Scholar
  38. Quandt, R. E. (1958). The estimation of the parameters of a linear regression system obeying two separate regimes. Journal of the American Statistical Association, 53, 873–880.CrossRefGoogle Scholar
  39. Quandt, R. E. (1960). Tests of the hypothesis that a linear regression system obeys two separate regimes. Journal of the American Statistical Association, 55, 324–330.CrossRefGoogle Scholar
  40. Rappoport, P., & Reichlin, L. (1989). Segmented trends and non-stationary time series. The Economic Journal, 99, 168–177.CrossRefGoogle Scholar
  41. So, M. K. P., Lam, K., & Li, W. K. (1998). A stochastic volatility model with Markov switching. Journal of Business and Economic Statistics, 16, 244–253.Google Scholar
  42. Wang, J., & Zivot, E. (2000). A Bayesian time series model of multiple structural changes in level, trend, and variance. Journal of Business and Economic Statistics, 18, 374–386.Google Scholar
  43. Yao, Y. C. (1984). Estimation of a noisy discrete-time step function: Bayes and empirical Bayes approaches. The Annals of Statistics, 12, 1434–1447.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA
  2. 2.SUNY at Stony BrookStony BrookUSA

Personalised recommendations