Plant-Microbe Interactions

Living reference work entry

Key Concepts

  • Globally, the majority of nitrogen and phosphorus uptake by plants is mediated by mutualistic root microbes, which form intricate and complex biochemical and genetic interactions with plants.

  • Plant leaves host a variety of beneficial bacteria and fungi that contribute to plant nutrition and/or defense against pathogens.

  • In addition to mutualistic bacteria intimately associated with roots, there exist plant growth-promoting rhizobacteria more loosely associated with roots that contribute to plant nutrition, protection from pathogens, and environmental stress reduction.

  • The region surrounding roots, the rhizosphere, is a dynamic environment, rich in chemical communication among plants and microbes, where nutrient cycling is altered by root exudation and heightened microbial activity.

  • Plants profoundly impact the biogeochemical cycling activities of soil microbes through their effects on microclimate and soil chemistry.

  • Plants and microbes collaborate to produce soil organic...

Keywords

Lignin Polysaccharide Photosynthesis Flavonoid Alkaloid 

References

  1. Badri DV, Weir TL, Dvd L, Vivanco JM. Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol. 2009;20:642–50.PubMedCrossRefGoogle Scholar
  2. Baumgartner K, Coetzee MPA, Hoffmeister D. Secrets of the subterranean pathosystem of Armillaria. Mol Plant Pathol. 2011;12:515–34.PubMedCrossRefGoogle Scholar
  3. Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.PubMedCrossRefGoogle Scholar
  4. Berry AM, Mendoza-Herrera A, Guo Y-Y, Hayashi J, Persson T, Barabote R, et al. New perspectives on nodule nitrogen assimilation in actinorhizal symbioses. Funct Plant Biol. 2011;38:645–52.CrossRefGoogle Scholar
  5. Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 2012;66:265–83.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bonfante P, Genre A. Mechanisms underlying beneficial plant – fungus interactions in mycorrhizal symbiosis. Nat Commun. 2010;1:48.PubMedCrossRefGoogle Scholar
  7. Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, et al. Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils. 2012;48:123–49.CrossRefGoogle Scholar
  8. Cipollini D, Rigsby CM, Barto EK. Microbes as targets and mediators of allelopathy in plants. J Chem Ecol. 2012;38:714–27.PubMedCrossRefGoogle Scholar
  9. Dearnaley JDW, Martos F, Selosse M-A. Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B, editor. Fungal associations. 2nd ed. Berlin/Heidelberg: Springer; 2012. p. 207–30.CrossRefGoogle Scholar
  10. Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen KS, et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob Chang Biol. 2012;18:2681–93.PubMedCrossRefGoogle Scholar
  11. Ehrenfeld JG. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems. 2003;6:503–23.CrossRefGoogle Scholar
  12. Eviner VT, Chapin FS. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst. 2003;34:455–85.CrossRefGoogle Scholar
  13. Hajek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA. Cell-wall polysaccharides play an important role in decay resistance of sphagnum and actively depressed decomposition in vitro. Biogeochemistry. 2011;103:45–57.CrossRefGoogle Scholar
  14. Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, et al. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant J. 2011;68:954–65.PubMedCrossRefGoogle Scholar
  15. Kuzyakov Y, Xu X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist. 2013;198:656–69.PubMedCrossRefGoogle Scholar
  16. Lipson DA, Raab TK, Schmidt SK, Monson RK. Variation in competitive abilities of plants and microbes for specific amino acids. Biol Fertil Soils. 1999;29:257–61.CrossRefGoogle Scholar
  17. Masson-Boivin C, Giraud E, Perret X, Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol. 2009;17:458–66.PubMedCrossRefGoogle Scholar
  18. Mayerhofer MS, Kernaghan G, Harper KA. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza. 2013;23:119–28.PubMedCrossRefGoogle Scholar
  19. Newsham KK. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 2011;190:783–93.PubMedCrossRefGoogle Scholar
  20. Oldroyd GED, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet. 2011;45:119–44.PubMedCrossRefGoogle Scholar
  21. Pawlowski K, Newton WE, editors. Nitrogen-fixing actinorhizal symbioses. Dordrecht: Springer; 2008.Google Scholar
  22. Ponge J-F. Plant-soil feedbacks mediated by humus forms: a review. Soil Biol Biochem. 2013;57:1048–60.CrossRefGoogle Scholar
  23. Raab TK, Lipson DA. The rhizosphere: a synchrotron-based view of nutrient flow in the root zone. In: Grafe M, Singh B, editors. Advances in understanding soil environments by application of synchrotron-based techniques. 1st ed. The Netherlands: Elsevier; 2010.Google Scholar
  24. Raghoebarsing AA, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, et al. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature. 2005;436:1153–6.PubMedCrossRefGoogle Scholar
  25. Saikkonen K, Gundel PE, Helander M. Chemical ecology mediated by fungal endophytes in grasses. J Chem Ecol. 2013;39:962–8.PubMedCrossRefGoogle Scholar
  26. Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Ann Bot. 2013;111:743–67.PubMedCrossRefGoogle Scholar
  27. Shiraishi A, Matsushita N, Hougetsu T. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst Appl Microbiol. 2010;33:269–74.PubMedCrossRefGoogle Scholar
  28. Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. New York: Academic; 2008.Google Scholar
  29. van der Putten WH, Klironomos JN, Wardle DA. Microbial ecology of biological invasions. ISME J. 2007;1:28–37.PubMedCrossRefGoogle Scholar
  30. Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40.PubMedCrossRefGoogle Scholar

Further Reading

  1. Crespi M, editor. Root genomics and soil interactions. Ames: Wiley-Blackwell; 2013.Google Scholar
  2. Maheshwari DK, editor. Bacteria in agrobiology: stress management. Heidelberg: Springer; 2012.Google Scholar
  3. Pinton R, Varanini Z, Nannipieri P, editors. The rhizosphere: biochemistry and organic substances at the soil-plant interface. 2nd ed. Boca Raton: CRC Press; 2007.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of BiologySan Diego State UniversitySan DiegoUSA

Personalised recommendations