COP9 Signalosome Network

  • Anna Franciosini
  • Giovanna Serino
  • Xing-Wang Deng
Part of the The Plant Sciences book series (PLANTSCI, volume 2)

Abstract

  • The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that functions in the ubiquitin–proteasome pathway.

  • The CSN has an isopeptidase activity which removes the NEDD8 peptide from the cullin–RING ubiquitin ligases (CRLs). This reaction ensures the proper function of the CRLs.

  • The CSN is involved in the control of multiple signaling processes in virtually all eukaryotes. In plants, the CSN takes part in a plethora of developmental processes and environmental responses, including photomorphogenesis, flower development, hormone signaling, and plant pathogen response.

  • The CSN is also required for the regulation of cellular pathways, such as cell cycle, DNA repair, and regulation of gene expression.

Keywords

Zinc Microbe Kato Gibberellin Ligase 

References

  1. Alcaide-Loridan C, Jupin I. Ubiquitin and plant viruses, let’s play together! Plant Physiol. 2012;160(1):72–82.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Chamovitz DA. Revisiting the COP9 signalosome as a transcriptional regulator. EMBO Rep. 2009;10(4):352–8.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A. E3 ubiquitin ligases and plant innate immunity. J Exp Bot. 2009;60(4):1123–32.PubMedCrossRefGoogle Scholar
  4. Deng XW, Dubiel W, Wei N, Hofmann K, Mundt K. Unified nomenclature for the COP9 signalosome and its subunits: an essential regulator of development. Trends Genet. 2000;16(7):289.PubMedCrossRefGoogle Scholar
  5. Emberley ED, Mosadeghi R, Deshaies RJ. Deconjugation of Nedd8 from Cul1 is directly regulated by Skp1-F-box and substrate, and the COP9 signalosome inhibits deneddylated SCF by a noncatalytic mechanism. J Biol Chem. 2012;287(35):29679–89.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Enchev RI, Scott DC, Da Fonseca PC, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP. Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep. 2012;2(3):616–27.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Hannss R, Dubiel W. COP9 signalosome function in the DDR. FEBS Lett. 2011;585(18):2845–52.PubMedCrossRefGoogle Scholar
  8. Hua Z, Vierstra RD. The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol. 2011;62:299–334.PubMedCrossRefGoogle Scholar
  9. Kato JY, Yoneda-Kato N. Mammalian COP9 signalosome. Genes Cells. 2009;14(11):1209–25.PubMedCrossRefGoogle Scholar
  10. Lau OS, Deng XW. The photomorphogenic repressors COP1 and DET1: 20 years later. Trend Plant Sci. 2012;17(10):584–93.CrossRefGoogle Scholar
  11. Lee MH, Zhao R, Phan L, Yeung SC. Roles of COP9 signalosome in cancer. Cell Cycle. 2011;10(18):3057–66.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Nezames CD, Deng XW. The COP9 signalosome: its regulation of cullin-based E3 ubiquitin ligases and role in photomorphogenesis. Plant Physiol. 2012;160(1):38–46.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Osterlund MT, Ang LH, Deng XW. The role of COP1 in repression of Arabidopsis photomorphogenic development. Trends Cell Biol. 1999;9(3):113–8.PubMedCrossRefGoogle Scholar
  14. Pick E, Hofmann K, Glickman MH. PCI complexes: beyond the proteasome, CSN, and eIF3 Troika. Mol Cell. 2009;35(3):260–4.PubMedCrossRefGoogle Scholar
  15. Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RL, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell. 2013;153(1):206–15.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J. 2010;61(6):1029–40.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Serino G, Pick E. Duplication and familial promiscuity within the proteasome lid and COP9 signalosome kin complexes. Plant Sci. 2013;203–204:89–97.PubMedCrossRefGoogle Scholar
  18. Stratmann JW, Gusmaroli G. Many jobs for one good cop – the COP9 signalosome guards development and defense. Plant Sci. 2012;185–186:50–64.PubMedCrossRefGoogle Scholar
  19. Wei N, Deng XW. The role of the COP/DET/FUS genes in light control of Arabidopsis seedling development. Plant Physiol. 1996;112(3):871–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Wei N, Serino G, Deng XW. The COP9 signalosome: more than a protease. Trend Biochem Sci. 2008;33(12):592–600.PubMedCrossRefGoogle Scholar

Further Reading

  1. Chen H, Shen Y, Tang X, Yu L, Wang J, Guo L, Zhang Y, Zhang H, Feng S, Strickland E, Zheng N, Deng XW. Arabidopsis CULLIN4 Forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell. 2006;18(8):1991–2004.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Dohmann EM, Nill C, Schwechheimer C. DELLA proteins restrain germination and elongation growth in Arabidopsis thaliana COP9 signalosome mutants. Eur J Cell Biol. 2010;89(2–3):163–8.PubMedCrossRefGoogle Scholar
  3. Feng S, Ma L, Wang X, Xie D, Dinesh-Kumar SP, Wei N, Deng XW. The COP9 signalosome interacts physically with SCF COI1 and modulates jasmonate responses. Plant Cell. 2003;15(5):1083–94.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Gfeller A, Liechti R, Farmer EE. Arabidopsis jasmonate signaling pathway. Sci Signal. 2010;3(109):cm4.PubMedGoogle Scholar
  5. Hind SR, Pulliam SE, Veronese P, Shantharaj D, Nazir A, Jacobs NS, Stratmann JW. The COP9 signalosome controls jasmonic acid synthesis and plant responses to herbivory and pathogens. Plant J. 2011;65(3):480–91.PubMedCrossRefGoogle Scholar
  6. Hotton SK, Callis J. Regulation of cullin RING ligases. Annu Rev Plant Biol. 2008;59:467–89.PubMedCrossRefGoogle Scholar
  7. Kotiguda GG, Weinberg D, Dessau M, Salvi C, Serino G, Chamovitz DA, Hirsch JA. The organization of a CSN5-containing subcomplex of the COP9 signalosome. J Biol Chem. 2012;287(50):42031–41.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Liu Y, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell. 2002;14(7):1483–96.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Lykke-Andersen K, Schaefer L, Menon S, Deng XW, Miller JB, Wei N. Disruption of the COP9 signalosome Csn2 subunit in mice causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic death. Mol Cell Biol. 2003;23(19):6790–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Menon S, Chi H, Zhang H, Deng XW, Flavell RA, Wei N. COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor-induced entry into the cell cycle from quiescence. Nat Immunol. 2007;8(11):1236–45.PubMedCrossRefGoogle Scholar
  11. Schwechheimer C, Isono E. The COP9 signalosome and its role in plant development. Eur J Cell Biol. 2010;89(2–3):157–62.PubMedCrossRefGoogle Scholar
  12. Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M, Deng XW. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science. 2001;292(5520):1379–82.PubMedCrossRefGoogle Scholar
  13. Sharon M, Mao H, Boeri EE, Stephens E, Zheng N, Robinson CV. Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. Structure. 2009;17(1):31–40.PubMedCrossRefGoogle Scholar
  14. Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell. 2009;137(5):860–72.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Tomoda K, Yoneda-Kato N, Fukumoto A, Yamanaka S, Kato JY. Multiple functions of Jab1 are required for early embryonic development and growth potential in mice. J Biol Chem. 2004;279(41):43013–8.PubMedCrossRefGoogle Scholar
  16. Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol. 2009;10(6):385–97.PubMedCrossRefGoogle Scholar
  17. Wager A, Browse J. Social network: JAZ protein interactions expand our knowledge of jasmonate signaling. Front Plant Sci. 2012;3:41.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Wang F, Deng XW. Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Res. 2011;21(9):1286–94.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Wang X, Feng S, Nakayama N, Crosby WL, Irish V, Deng XW, Wei N. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development. Plant Cell. 2003;15(5):1071–82.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Wei N, Deng XW. The COP9 signalosome. Annu Rev Cell Dev Biol. 2003;19:261–86.PubMedCrossRefGoogle Scholar
  21. Yan J, Walz K, Nakamura H, Carattini-Rivera S, Zhao Q, Vogel H, Wei N, Justice MJ, Bradley A, Lupski JR. COP9 signalosome subunit 3 is essential for maintenance of cell proliferation in the mouse embryonic epiblast. Mol Cell Biol. 2003;23(19):6798–808.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Zhao R, Yeung SC, Chen J, Iwakuma T, Su CH, Chen B, Qu C, Zhang F, Chen YT, Lin YL, Lee DF, Jin F, Zhu R, Shaikenov T, Sarbassov D, Sahin A, Wang H, Lai CC, Tsai FJ, Lozano G, Lee MH. Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J Clin Invest. 2011;121(3):851–65.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Anna Franciosini
    • 1
  • Giovanna Serino
    • 1
  • Xing-Wang Deng
    • 2
  1. 1.“Charles Darwin” Department of Biology and BiotechnologySapienza Università di RomaRomeItaly
  2. 2.Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenUSA

Personalised recommendations