Plant Pollination and Dispersal

Reference work entry
Part of the The Plant Sciences book series (PLANTSCI, volume 8)

Abstract

  • Plants depend on a wide diversity of animals for pollination and seed dispersal.

  • The devices used by plants to attract animals span the whole range of animal senses.

  • The diversity of plant sexual systems is very broad.

  • Plants can manipulate their own fertilization.

  • Pollen delivery systems must be precise.

  • Changes in floral attraction signals can have evolutionary consequences.

  • Seeds must be dispersed away from parent plants and each other.

  • Pollination and seed dispersal influence the genetic structure of populations and their evolution.

  • Human activities have significant and often negative impacts on pollinators and seed dispersers. Problems are predictable.

  • The complex nature of these plant-animal interactions means that many questions await future studies.

Keywords

Fermentation Maize Germinate Flare Maned 

References

  1. Adler LS, Irwin RE. What you smell is more important than what you see? Natural selection on floral scent. New Phytol. 2012;195:510–1.PubMedCrossRefGoogle Scholar
  2. Ashley MV. Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci. 2010;29:148–61.CrossRefGoogle Scholar
  3. Barrett SCH. The evolution of plant sexual diversity. Nat Rev Genet. 2002;3:274–84.PubMedCrossRefGoogle Scholar
  4. Buchmann SL, Nabhan GP. The forgotten pollinators. Washington D.C.: Island Press; 1996.Google Scholar
  5. Cain ML, Milligan BG, Strand AE. Long-distance seed dispersal in plant populations. Am J Bot. 2000;87:1217–27.PubMedCrossRefGoogle Scholar
  6. Cheptou PO, Carrue O, Rouifed S, Cantarel A. Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc Natl Acad Sci. 2008;105:3796–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cody ML, Overton JM. Short-term evolution of reduced dispersal in island plant populations. J Ecol. 1996;84:53–61.CrossRefGoogle Scholar
  8. Corlett RT. Seed dispersal distances and plant migration potential in tropical East Asia. Biotropica. 2009;41:592–8.CrossRefGoogle Scholar
  9. da Silva HR, de Britto-Pereira MC, Caramaschi U. Frugivory and seed dispersal by Hyla truncata, a neotropical treefrog. Copeia. 1989;781–3.Google Scholar
  10. Delye C, Jasieniuk M, Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013. In press.Google Scholar
  11. Dodd RJ, Linhart YB. Reproductive consequences of interactions between Yucca glauca (Agavaceae) and Tegeticula yuccasella (Lepidoptera) in Colorado. Am J Bot. 1994;81:815–25.CrossRefGoogle Scholar
  12. Ellis AG, Johnson SD. Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the Orchidaceae. Am Nat. 2010;176:E143–51.PubMedCrossRefGoogle Scholar
  13. Ellstrand NC. Over a decade of crop transgenes out-of-place. In: Regulation of agricultural biotechnology: the United States and Canada. The Netherlands: Springer; 2012. p. 123–35.Google Scholar
  14. Fenner M, Thomson K. The ecology of seeds. New York: Cambridge University press; 2005.CrossRefGoogle Scholar
  15. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD. Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst. 2004;35:375–403.CrossRefGoogle Scholar
  16. Galen C. Measuring pollinator-mediated selection on morphometric floral traits: bumblebees and the alpine sky pilot, Polemonium viscosum. Evolution. 1989;43:882–90.CrossRefGoogle Scholar
  17. Galen C. Why do flowers vary? BioScience. 1999;49:631–40.CrossRefGoogle Scholar
  18. Galetti M, Goulding M. Seed dispersal by fishes in tropical and temperate fresh waters: the growing evidence. Acta Oecol. 2011;37:561–77.CrossRefGoogle Scholar
  19. Gaskett AC. Orchid pollination by sexual deception: pollinator perspectives. Biol Rev. 2011;86:33–75.PubMedCrossRefGoogle Scholar
  20. Gómez C, Espadaler X. An update of the world survey of myrmecochorous dispersal distances. Ecography. 2013;36:1193–1201.Google Scholar
  21. Gomez JM, Perfectti F, Bosch J, Camacho JPM. A geographic selection mosaic in a generalized plant–pollinator–herbivore system. Ecol Monogr. 2009;79:245–63.CrossRefGoogle Scholar
  22. Hamrick JL, Trapnell DW. Using population genetic analyses to understand seed dispersal patterns. Acta Oecol. 2011;37:641–9.CrossRefGoogle Scholar
  23. Hu S, Dilcher DL, Jarzen DM, Winship D. Early steps of angiosperm–pollinator coevolution. Proc Natl Acad Sci. 2008;105:240–5.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Irwin RE, Strauss SY, Storz S, Emerson A, Guibert G. The role of herbivores in the maintenance of a flower color polymorphism in wild radish. Ecology. 2003;84:1733–43.CrossRefGoogle Scholar
  25. Johnson RA, Willson M, Thomson JN, Bertin RI. Nutritional values of wild fruit and consumption by migrant frugivorous birds. Ecology. 1985;66:819–27.CrossRefGoogle Scholar
  26. Jordano P, Garcia C, Godoy JA, García-Castaño JL. Differential contribution of frugivores to complex seed dispersal patterns. Proc Natl Acad Sci. 2007;104:3278–82.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Karron JD, Ivey CT, Mitchell RJ, Whitehead MR, Peakall R, Case AL. Viewpoint: part of a special issue on plant mating systems. Ann Bot. 2012;109:493–503.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kathiresan K, Bingham BL. Biology of mangroves and mangrove ecosystems. Adv Mar Biol. 2001;40:81–251.CrossRefGoogle Scholar
  29. Kay KM, Sargent RD. The role of animal pollination in plant speciation: integrating ecology, geography, and genetics. Annu Rev Ecol Evol Syst. 2009;40:637–56.CrossRefGoogle Scholar
  30. Kearns CA, Inouye DW. Techniques for pollination biologists. Niwot: University Press of Colorado; 1993.Google Scholar
  31. Kelly D, Sork VL. Mast seeding in perennial plants: why, how, where? Annu Rev Ecol Syst. 2002;33:427–47.CrossRefGoogle Scholar
  32. Kessler D, Diezel C, Clark DG, Colquhoun TA, Baldwin IT. Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol Lett. 2013;16:299–306.PubMedCrossRefGoogle Scholar
  33. Levine JM, Murrell DJ. The community-level consequences of seed dispersal patterns. Annu Rev Eco Syst. 2003;34:549–74.CrossRefGoogle Scholar
  34. Linhart YB. Ecological and behavioral determinants of pollen dispersal in hummingbird-pollinated Heliconia. Am Nat. 1973;107:511–23.CrossRefGoogle Scholar
  35. Llandres AL, Gawryszewski FM, Heiling AM, Herberstein ME. The effect of colour variation in predators on the behaviour of pollinators: Australian crab spiders and native bees. Ecol Entomol. 2011;36:72–81.CrossRefGoogle Scholar
  36. Olesen JM, Valedo A. Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol Evol. 2003;18:177–81.CrossRefGoogle Scholar
  37. Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120:321–6.CrossRefGoogle Scholar
  38. Patel A, Hossaert-Mckey M, Mckey D. Ficus-pollinator research in India: past, present and future. Curr Sci. 1993;65:243–53.Google Scholar
  39. Patiny S. Evolution of plant-pollinator relationships. Cambridge: Cambridge University Press; 2011.CrossRefGoogle Scholar
  40. Pineyro-Nelson A, Van Heerwaarden J, Perales HR, Serratos-Hernandez JA, Rangel A, Hufford MB, Álvarez-Buylla ER. Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Mol Ecol. 2009;18(4):750–61.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Platt SG, Elsey RM, Liu H, Rainwater TR, Nifong JC, Rosenblatt AE, Mazzotti FJ. Frugivory and seed dispersal by crocodilians: an overlooked form of saurochory? J Zool. 2013;291:87–99.Google Scholar
  42. Potts SG, Jacobus C, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25:345–53.PubMedCrossRefGoogle Scholar
  43. Primack RB. Ultraviolet patterns in flowers, or flowers viewed by insects. Arnoldia. 1982;42:146–59.Google Scholar
  44. Proctor M, Yeo P, Lack A. The natural history of pollination. London: Collins New Naturalist Library; 2012.Google Scholar
  45. Puerta-Piñero C, Muller-Landau HC, Calderón O, Wright SJ. Seed arrival in tropical forest tree fall gaps. Ecology. 2013;94:1552–62.PubMedCrossRefGoogle Scholar
  46. Richards AJ. Apomixis in flowering plants: an overview. Philos Trans R Soc Lond B Biol Sci. 2003;358:1085–93.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Sapir Y, Armbruster SC. Pollinator-mediated selection and floral evolution: from pollination ecology to macroevolution. New Phytol. 2010;188:303–6.PubMedCrossRefGoogle Scholar
  48. Schaefer HM, Ruxton GD. Plant-animal communication. Oxford: Oxford University Press; 2011.Google Scholar
  49. Schiestl FP. Animal pollination and speciation in plants: general mechanisms and examples from the orchids evolution of plant-pollinator relationships; 2011. books.google.com
  50. Schulze B, Spiteller D. Capsaicin: tailored chemical defence against unwanted “frugivores”. ChemBioChem. 2009;10:428–9.PubMedCrossRefGoogle Scholar
  51. Şekercioğlu ÇH, Daily GC, Ehrlich PR. Ecosystem consequences of bird declines. Proc Natl Acad Sci. 2004;101:18042–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Sheehan H, Hermann K, Kuhlemeier C. Color and scent: how single genes influence pollinator attraction. Cold Spring Harb Symp Quant Biol. 2013;77:117–133.Google Scholar
  53. Shrestha M, Dyer AG, Boyd-Gerny S, Wong BBM, Burd M. Shades of red: bird-pollinated flowers target the specific colour discrimination abilities of avian vision. New Phytol. 2013;198:301–10.PubMedCrossRefGoogle Scholar
  54. Simon R, Holderied MW, Corinna U, Koch CU, von Helversen O. Floral acoustics: conspicuous echoes of a dish-shaped leaf attract bat pollinators. Science. 2011;333:631–3.PubMedCrossRefGoogle Scholar
  55. Snow AA. Illegal gene flow from transgenic creeping bentgrass: the saga continues. Mol Ecol. 2012;21:4663–4.PubMedCrossRefGoogle Scholar
  56. Strauss SY, Irwin RE. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst. 2004;35:435–66.CrossRefGoogle Scholar
  57. Tomback DF, Linhart YB. The evolution of bird-dispersed pines. Evol Ecol. 1990;4:185–219.CrossRefGoogle Scholar
  58. Turner ME, Stephens JC, Anderson WW. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proc Natl Acad Sci. 1982;79:203–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Vidal MM, Pires MM, Guimarães Jr PR. Large vertebrates as the missing components of seed-dispersal networks. Biol Conserv. 2013;163:42–8.CrossRefGoogle Scholar
  60. von Helversen D, von Helversen O. Object recognition by echolocation: a nectar-feeding bat exploiting the flowers of a rain forest vine. J Comp Physiol A. 2003;189:327–36.Google Scholar
  61. Waser NM, Ollerton J, editors. Plant-pollinator interactions: from specialization to generalization. Chicago: University of Chicago Press; 2006.Google Scholar
  62. Wenny DG. Advantages of seed dispersal: a re-evaluation of directed dispersal. Evol Ecol Res. 2001;3:51–74.Google Scholar
  63. Wenny DG, Devault TL, Johnson MD, Kelly D, Sekercioglu CH, Tomback DF, Whelan CJ. The need to quantify ecosystem services provided by birds. Auk. 2011;128:1–14.CrossRefGoogle Scholar
  64. Whitney H, Chittka L, Bruce T, Glover BJ. Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Curr Biol. 2009;19:1–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations