Melanoma pp 1-17 | Cite as

Biology of Melanoma Metastasis

  • Qiaoli Ma
  • Lothar C. Dieterich
  • Michael Detmar
Living reference work entry


Metastasis is the major cause of death in patients suffering from malignant melanoma, one of the most aggressive types of cancer. Local recurrence is rare in melanoma, but regional and distant metastasis, particularly in the brain, bone, lung and liver, may arise even many years after primary tumor resection, probably due to reactivation of dormant melanoma cells. Dormancy of dispersed melanoma cells is regulated by tumor cell intrinsic as well as extrinsic factors, including angiogenesis, immunosurveillance, and other stroma-dependent processes. Melanoma metastasis correlates with local invasion and the vertical growth phase at the primary site. During this phase, cancer cells invade deep into the dermis and interact with various stromal cells to gain access to blood and lymphatic vessels. Subsequently, melanoma cells migrate along the local lymphatic vasculature, sometimes resulting in locoregional lesions such as in-transit metastases, before reaching the draining lymph node and spreading systemically. Both lymphatic and blood vessels play a critical role in the dispersion of melanomas. Besides providing a simple transport route for cancer cells, endothelial cells are emerging as important and active players in melanoma metastasis. Conditioned by factors derived from the tumor microenvironment, the vasculature undergoes morphological and functional changes, which facilitate the metastatic process in multiple ways. Consequently, therapeutic manipulation of lymphatic and blood vessels may represent a new way to combat melanoma metastasis.


Lymphangiogenesis Angiogenesis VEGF Lymphatic vessels Dormancy Local invasion 


  1. Alitalo A, Detmar M (2012) Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 31(42):4499–4508. CrossRefPubMedGoogle Scholar
  2. Balch CM (2009) Microscopic satellites around a primary melanoma: another piece of the puzzle in melanoma staging. Ann Surg Oncol 16(5):1092–1094. CrossRefPubMedGoogle Scholar
  3. Balch CM, Soong SJ, Atkins MB, Buzaid AC, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A Jr, Kirkwood JM, McMasters KM, Mihm MF, Morton DL, Reintgen DS, Ross MI, Sober A, Thompson JA, Thompson JF (2004) An evidence-based staging system for cutaneous melanoma. CA Cancer J Clin 54(3):131–149.
  4. Blum KS, Proulx ST, Luciani P, Leroux JC, Detmar M (2013) Dynamics of lymphatic regeneration and flow patterns after lymph node dissection. Breast Cancer Res Treat 139(1):81–86. CrossRefPubMedGoogle Scholar
  5. Boyle ST, Ingman WV, Poltavets V, Faulkner JW, Whitfield RJ, McColl SR, Kochetkova M (2016) The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells. Oncogene 35(1):105–115. CrossRefPubMedGoogle Scholar
  6. Cao ZF, Bao MM, Miele L, Sarkar FH, Wang ZW, Zhou QS (2013) Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. Eur J Cancer 49(18):3914–3923. CrossRefPubMedGoogle Scholar
  7. Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC, Detmar M (2003) Tumor lymphangiogenesis – a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 162(6): 1951–1960. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dadras SS, Lange-Asschenfeldt B, Velasco P, Nguyen L, Vora A, Muzikansky A, Jahnke K, Hauschild A, Hirakawa S, Mihm MC, Detmar M (2005) Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 18(9):1232–1242. CrossRefPubMedGoogle Scholar
  9. Damsky WE, Rosenbaum LE, Bosenberg M (2011) Decoding melanoma metastasis. Cancers (Basel) 3(1): 126–163. CrossRefGoogle Scholar
  10. Damsky WE, Theodosakis N, Bosenberg M (2014) Melanoma metastasis: new concepts and evolving paradigms. Oncogene 33(19):2413–2422. CrossRefPubMedGoogle Scholar
  11. Detmar M (2000) The role of VEGF and thrombospondins in skin angiogenesis. J Dermatol Sci 24(Suppl 1):S78–S84CrossRefPubMedGoogle Scholar
  12. Dieterich LC, Detmar M (2016) Tumor lymphangiogenesis and new drug development. Adv Drug Deliv Rev 99(Pt B):148–160. CrossRefPubMedGoogle Scholar
  13. Doeden K, Ma ZH, Narasimhan B, Swetter SM, Detmar M, Dadras SS (2009) Lymphatic invasion in cutaneous melanoma is associated with sentinel lymph node metastasis. J Cutan Pathol 36(7):772–780. CrossRefPubMedGoogle Scholar
  14. Elder DE (2016) Melanoma progression. Pathology 48(2):147–154. CrossRefPubMedGoogle Scholar
  15. Gaggioli C, Sahai E (2007) Melanoma invasion – current knowledge and future directions. Pigment Cell Res 20(3):161–172. CrossRefPubMedGoogle Scholar
  16. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E, Brewer DS, Kallio HM, Hognas G, Annala M, Kivinummi K, Goody V, Latimer C, O’Meara S, Dawson KJ, Isaacs W, Emmert-Buck MR, Nykter M, Foster C, Kote-Jarai Z, Easton D, Whitaker HC, Group IPU, Neal DE, Cooper CS, Eeles RA, Visakorpi T, Campbell PJ, McDermott U, Wedge DC, Bova GS (2015) The evolutionary history of lethal metastatic prostate cancer. Nature 520(7547):353–357. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Helfrich I, Edler L, Sucker A, Thomas M, Christian S, Schadendorf D, Augustin HG (2009) Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin Cancer Res 15(4): 1384–1392. CrossRefPubMedGoogle Scholar
  18. Hendrix MJC, Seftor EA, Seftor REB, Chao JT, Chien DS, Chu YW (2016) Tumor cell vascular mimicry: novel targeting opportunity in melanoma. Pharmacol Ther 159:83–92. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109(3):1010–1017. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71(11):3792–3801. CrossRefPubMedGoogle Scholar
  22. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Karaman S, Detmar M (2014) Mechanisms of lymphatic metastasis. J Clin Invest 124(3):922–928. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kerjaschki D, Bago-Horvath Z, Rudas M, Sexl V, Schneckenleithner C, Wolbank S, Bartel G, Krieger S, Kalt R, Hantusch B, Keller T, Nagy-Bojarszky K, Huttary N, Raab I, Lackner K, Krautgasser K, Schachner H, Kaserer K, Rezar S, Madlener S, Vonach C, Davidovits A, Nosaka H, Hammerle M, Viola K, Dolznig H, Schreiber M, Nader A, Mikulits W, Gnant M, Hirakawa S, Detmar M, Alitalo K, Nijman S, Offner F, Maier TJ, Steinhilber D, Krupitza G (2011) Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J Clin Invest 121(5): 2000–2012. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kim M, Koh YJ, Kim KE, Koh BI, Nam DH, Alitalo K, Kim I, Koh GY (2010) CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 70(24): 10411–10421. CrossRefPubMedGoogle Scholar
  26. Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12): 1117–1133. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, Cron M, Fatho M, Lennerz V, Wolfel T, Holzel M, Tuting T (2012) Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490(7420):412–416. CrossRefPubMedGoogle Scholar
  28. Landsberg J, Tuting T, Barnhill RL, Lugassy C (2016) The role of neutrophilic inflammation, angiotropism, and pericytic mimicry in melanoma progression and metastasis. J Invest Dermatol 136(2):372–377. CrossRefPubMedGoogle Scholar
  29. Lanitis E, Irving M, Coukos G (2015) Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol 33:55–63. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Leong SP, Mihm MC Jr, Murphy GF, Hoon DS, Kashani-Sabet M, Agarwala SS, Zager JS, Hauschild A, Sondak VK, Guild V, Kirkwood JM (2012) Progression of cutaneous melanoma: implications for treatment. Clin Exp Metastasis 29(7):775–796. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lugassy C, Zadran S, Bentolila LA, Wadehra M, Prakash R, Carmichael ST, Kleinman HK, Peault B, Larue L, Barnhill RL (2014) Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an alternative to intravascular cancer dissemination. Cancer Microenviron 7(3):139–152. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lund AW, Wagner M, Fankhauser M, Steinskog ES, Broggi MA, Spranger S, Gajewski TF, Alitalo K, Eikesdal HP, Wiig H, Swartz MA (2016) Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest.
  33. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23(1):41–56. CrossRefPubMedGoogle Scholar
  35. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar CM, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan JD, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang YB, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Proulx ST, Luciani P, Christiansen A, Karaman S, Blum KS, Rinderknecht M, Leroux JC, Detmar M (2013) Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis. Biomaterials 34(21):5128–5137. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Read RL, Haydu L, Saw RPM, Quinn MJ, Shannon K, Spillane AJ, Stretch JR, Scolyer RA, Thompson JF (2015) In-transit melanoma metastases: incidence, prognosis, and the role of lymphadenectomy. Ann Surg Oncol 22(2):475–481. CrossRefPubMedGoogle Scholar
  38. Rinderknecht M, Detmar M (2008) Tumor lymphangiogenesis and melanoma metastasis. J Cell Physiol 216(2):347–354. CrossRefPubMedGoogle Scholar
  39. Rouhani SJ, Eccles JD, Tewalt EF, Engelhard VH (2014) Regulation of T-cell tolerance by lymphatic endothelial cells. J Clin Cell Immunol 5.
  40. Schietroma C, Cianfarani F, Lacal PM, Odorisio T, Orecchia A, Kanitakis J, D’Atri S, Failla CM, Zambruno G (2003) Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer 98(4):789–797. CrossRefPubMedGoogle Scholar
  41. Senft D, Ronai ZA (2016) Immunogenic, cellular, and angiogenic drivers of tumor dormancy-a melanoma view. Pigment Cell Melanoma Res 29(1):27–42. CrossRefPubMedGoogle Scholar
  42. Shaikh L, Sagebiel RW, Ferreira MQMM, Nosrati M, Miller JR, Kashani-Sabet M (2005) The role of microsatellites as a prognostic factor in primary malignant melanoma. Arch Dermatol 141(6):739–742. CrossRefPubMedGoogle Scholar
  43. Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17(10):611–625. CrossRefPubMedGoogle Scholar
  44. Skobe M, Detmar M (2000) Structure, function, and molecular control of the skin lymphatic system. J Investig Dermatol Symp Proc 5(1):14–19. CrossRefPubMedGoogle Scholar
  45. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14(3): 159–172. CrossRefPubMedGoogle Scholar
  46. Streit M, Detmar M (2003) Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene 22(20): 3172–3179.
  47. Svedman FC, Pillas D, Taylor A, Kaur M, Linder R, Hansson J (2016) Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe – a systematic review of the literature. Clin Epidemiol 8:109–122. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Vesely MD, Schreiber RD (2013) Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci 1284:1–5. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Whiteside TL (2016) Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem 74(74):103–141. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Zgraggen S, Ochsenbein AM, Detmar M (2013) An important role of blood and lymphatic vessels in inflammation and allergy. J Allergy (Cairo) 2013:672381. Google Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Qiaoli Ma
    • 1
  • Lothar C. Dieterich
    • 1
  • Michael Detmar
    • 1
  1. 1.Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland

Section editors and affiliations

  • David E. Fisher
    • 1
  • Nick Hayward
    • 2
  • David C. Whiteman
    • 3
  • Keith T. Flaherty
    • 4
  • F. Stephen Hodi
    • 5
    • 6
  • Hensin Tsao
    • 7
    • 8
  • Glenn Merlino
    • 9
  1. 1.Department of Dermatology, Harvard/MGH Cutaneous Biology Research Center, and Melanoma Program, MGH Cancer CenterMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.QIMR Berghofer Medical Research InstituteHerstonAustralia
  3. 3.QIMR Berghofer Medical Research InstituteHerstonAustralia
  4. 4.Henri and Belinda Termeer Center for Targeted TherapiesMGH Cancer CenterBostonUSA
  5. 5.FraminghamUSA
  6. 6.Department of Medicine, Brigham and Women's HospitalDana-Farber Cancer InstituteBostonUSA
  7. 7.AuburndaleUSA
  8. 8.Harvard-MIT Health Sciences and TechnologyCambridgeUSA
  9. 9.Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations