Skip to main content

Auditory Event-related Potentials

  • Living reference work entry
  • First Online:

Synonyms

Auditory event-related potential (AERP); Auditory evoked field (AEF); Auditory evoked potential (AEP)

Definition

Auditory event-related potentials are electric potentials (AERP, AEP) and magnetic fields (AEF) generated by the synchronous activity of large neural populations in the brain, which are time-locked to some actual or expected sound event (cf. the definition of ERP in “EEG/MEG Evoked/Spontaneous Activity”).

Detailed Description

Measurement and Derivation of AERPs/AEFs

AERPs are derived from the continuous electro-/magnetoencephalogram (EEG/MEG, see “EEG/MEG Evoked/Spontaneous Activity”) by extracting segments of the signal (epochs) time-locked to some actual or expected acoustic event. AERPs were first recorded by Hallowell and Pauline A. Davis in 1935–1936 (Davis 1939; Davis et al. 1939). Because EEG/MEG is typically recorded non-invasively (outside the brain, e.g., from/around the scalp), these measures only reflect synchronous activity of large neural populations...

This is a preview of subscription content, log in via an institution.

References

  • Alain C, Winkler I (2012) Recording event-related brain potentials: application to study auditory perception. In: Poeppel D, Overath T, Popper AN, Fay RR (eds) The human auditory cortex. Springer handbook of auditory research, vol 43. Springer, New York, pp 69–96

    Google Scholar 

  • Alain C, Arnott SR, Picton TW (2001) Bottom-up and top-down infl uences on auditory scene analysis: evidence from event-related brain potentials. J Exp Psychol Hum Percept Perform 27:1072–1089

    PubMed  CAS  Google Scholar 

  • Alho K (1995) Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 16:38–51

    PubMed  CAS  Google Scholar 

  • Alho K, Paavilainen P, Reinikainen K, Sams M, Näätänen R (1986a) Separability of different negative components of the event-related potential associated with auditory stimulus processing. Psychophysiology 23:613–623

    PubMed  CAS  Google Scholar 

  • Alho K, Sams M, Paavilainen P, Näätänen R (1986b) Small pitch separation and the selective attention effect on the ERP. Psychophysiology 23:189–197

    PubMed  CAS  Google Scholar 

  • Alho K, Sainio K, Sajaniemi N, Reinikainen K, Näätänen R (1990) Event-related brain potential of human newborns to pitch change of an acoustic stimulus. Electroencephalogr Clin Neurophysiol 77:151–155

    PubMed  CAS  Google Scholar 

  • Alho K, Teder W, Lavikainen J, Näätänen R (1994) Strongly focused attention and auditory event-related potentials. Biol Psychol 38:73–90

    PubMed  CAS  Google Scholar 

  • Alho K, Winkler I, Escera C, Huotilainen M, Virtanen J, Jääskeläinen I, Pekkonen E, Ilmoniemi R (1998) Processing of novel sounds and frequency changes in the human auditory cortex: magnetoencephalographic recordings. Psychophysiology 35:211–224

    PubMed  CAS  Google Scholar 

  • Alho K, Grimm S, Mateo-León S, Costa-Faidella J, Escera C (2012) Early processing of pitch in the human auditory system. Eur J Neurosci 36:2972–2978

    PubMed  Google Scholar 

  • Althen H, Grimm S, Escera C (2011) Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials. PLoS ONE 6:e28522

    PubMed  CAS  PubMed Central  Google Scholar 

  • Arnott SR, Bardouille T, Ross B, Alain C (2001) Neural generators underlying concurrent sound segregation. Brain Res 1387:116–124

    Google Scholar 

  • Atienza M, Cantero JL, Dominguez-Marin E (2002) The time course of neural changes underlying auditory perceptual learning. Learn Mem 9:138–150

    PubMed  PubMed Central  Google Scholar 

  • Ayala YA, Malmierca MS (2013) Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circuits 6:89

    PubMed  PubMed Central  Google Scholar 

  • Baddeley AD, Hitch GJ (1974) Working memory. In: Bower GA (ed) Recent advances in learning and motivation, vol 8. Academic, New York, pp 47–90

    Google Scholar 

  • Baldeweg T (2006) Repetition effects to sounds: evidence for predictive coding in the auditory system. Trends Cogn Sci 10:93–94

    PubMed  Google Scholar 

  • Baldeweg T (2007) ERP repetition effects and mismatch negativity generation: a predictive coding perspective. J Psychophysiol 21:204–213

    Google Scholar 

  • Baldeweg T, Klugman A, Gruzelier J, Hirsch SR (2004) Mismatch negativity potentials and cognitive impairment in schizophrenia. Schizophr Res 69:203–217

    PubMed  Google Scholar 

  • Baloh RW (1997) Dizziness, hearing loss, and tinnitus. Oxford University Press, New York

    Google Scholar 

  • Başar E, Rosen B, Başar-Eroglu C, Greitschus F (1987) The associations between 40 Hz-EEG and the middle latency response of the auditory evoked potential. Int J Neurosci 33:103–117

    PubMed  Google Scholar 

  • Behroozmand R, Karvelis L, Liu H, Larson CR (2009) Vocalization-induced enhancement of the auditory cortex responsiveness during voice F0 feedback perturbation. Clin Neurophysiol 120:1303–1312

    PubMed  PubMed Central  Google Scholar 

  • Bell SL, Smith DC, Allen R, Lutman ME (2004) Recording the middle latency response of the auditory evoked potential as a measure of depth of anaesthesia. A technical note. Br J Anaesth 92:442–445

    PubMed  CAS  Google Scholar 

  • Bendixen A, Schröger E, Winkler I (2009) I heard that coming: event-related potential evidence for stimulus-driven prediction in the auditory system. J Neurosci 29:8447–8451

    PubMed  CAS  Google Scholar 

  • Bendixen A, Jones SJ, Klump G, Winkler I (2010) Probability dependence and functional separation of the object-related and mismatch negativity event-related potential components. Neuroimage 50:285–290

    PubMed  Google Scholar 

  • Berti S (2008) Cognitive control after distraction: event-related brain potentials (ERPs) dissociate between different processes of attentional allocation. Psychophysiology 45:608–620

    PubMed  Google Scholar 

  • Bishop DVM, Hardiman M, Uwer R, von Suchodoletz W (2007) Maturation of the long-latency auditory ERP: step function changes at start and end of adolescence. Devel Sci 10:565–575

    Google Scholar 

  • Borgmann C, Ross B, Draganova R, Pantev C (2001) Human auditory middle latency responses: influence of stimulus type and intensity. Hear Res 158:57–64

    PubMed  CAS  Google Scholar 

  • Bosnyak DJ, Eaton RA, Roberts LE (2004) Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones. Cereb Cortex 14:1088–1099

    PubMed  Google Scholar 

  • Bregman AS (1990) Auditory scene analysis. The perceptual organization of sound. MIT Press, Cambridge, MA

    Google Scholar 

  • Broadbent DE (1958) Perception and communication. Pergamon Press, New York

    Google Scholar 

  • Broadbent DE (1970) Stimulus set and response set: two kinds of selective attention. In: Mostofsky DI (ed) Attention, contemporary theory and analysis. Appleton Century Crofts, New York, pp 51–60

    Google Scholar 

  • Busse L, Woldorff MG (2003) The ERP omitted stimulus response to “no-stim” events and its implications for fast-rate event-related fMRI designs. Neuroimage 18:856–864

    PubMed  Google Scholar 

  • Butler BE, Trainor LJ (2012) Sequencing the cortical processing of pitch-evoking stimuli using EEG analysis and source estimation. Front Psychol 3:180

    PubMed  PubMed Central  Google Scholar 

  • Cebrian AN, Janata P (2010) Electrophysiological correlates of accurate mental image formation in auditory perception and imagery tasks. Brain Res 1342:39–54

    Google Scholar 

  • Chakrabarty D, Elhilali M (2013) Predictive analysis of two tone stream segregation via extended Kalman filter. In: Proceedings of 2013 47th annual conference information science system (CISS), doi:10.1109/CISS.2013.6552279

    Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979

    Google Scholar 

  • Chiappa KH (1997) Evoked potentials in clinical medicine. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Coch M, Gullick MM (2012) Event-related potentials and development. In: Luck SJ, Kappenman ES (eds) The Oxford handbook of event-related potential components. Oxford University Press, New York, pp 475–511

    Google Scholar 

  • Connolly JF, Phillips NA (1994) Event-related potential components reflect phonological and semantic processing of the terminal words of spoken sentences. J Cogn Neurosci 6:256–266

    PubMed  CAS  Google Scholar 

  • Cooper RJ, Atkinson RJ, Clark RA, Michie PT (2013) Event-related potentials reveal modelling of auditory repetition in the brain. Int J Psychophysiol 88:74–81

    PubMed  Google Scholar 

  • Cornella M, Leung S, Grimm S, Escera C (2012) Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One 7:e43604

    PubMed  CAS  PubMed Central  Google Scholar 

  • Costa-Faidella J, Baldeweg T, Grimm S, Escera C (2011a) Interactions between “what” and “when” in the auditory system: temporal predictability enhances repetition suppression. J Neurosci 31:18590–18597

    PubMed  CAS  Google Scholar 

  • Costa-Faidella J, Grimm S, Slabu LM, Díaz-Santaella F, Escera C (2011b) Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology 48:774–783

    PubMed  Google Scholar 

  • Cowan N (1984) On short and long auditory stores. Psychol Bull 96:341–370

    PubMed  CAS  Google Scholar 

  • Cowan N (1988) Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system. Psychol Bull 104:163–191

    PubMed  CAS  Google Scholar 

  • Cowan N (2001) The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci 24:87–114

    PubMed  CAS  Google Scholar 

  • Cowan N, Winkler I, Teder W, Näätänen R (1993) Short- and long-term prerequisites of the mismatch negativity in the auditory event related potential (ERP). J Exp Psychol Learn Mem Cogn 19:909–921

    PubMed  CAS  Google Scholar 

  • Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115:732–744

    PubMed  Google Scholar 

  • Curio G (2005) Ultrafast EEG activities. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography. Basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 495–504

    Google Scholar 

  • D’Arcy RCN, Ryner L, Richter W, Service E, Connolly JF (2004) The fan effect in fMRI: left hemisphere specialization in verbal working memory. Neuroreport 15:1851–1855

    PubMed  Google Scholar 

  • Davis PA (1939) Effects of acoustic stimuli on the waking human brain. J Neurophysiol 2:494–499

    Google Scholar 

  • Davis H, Davis PA, Loomis AL, Harvey EN, Hobart G (1939) Electrical reactions of the human brain to auditory stimulation during sleep. J Neurophysiol 2:500–514

    Google Scholar 

  • Demany L, Semal C (2007) The role of memory in auditory perception. In: Yost WA, Popper AN, Fay RA (eds) Auditory perception of sound sources. Springer handbook of auditory research, vol 29. Springer, New York, pp 77–113

    Google Scholar 

  • Deouell LY (2007) The frontal generator of the mismatch negativity revisited. J Psychophysiol 21:188–203

    Google Scholar 

  • Deouell LY, Bentin S, Giard MH (1998) Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. Psychophysiology 35:355–365

    PubMed  CAS  Google Scholar 

  • Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci U S A 93:13494–13499

    PubMed  CAS  PubMed Central  Google Scholar 

  • Deutsch JA, Deutsch D (1963) Attention: some theoretical considerations. Psychol Rev 70:80–90

    PubMed  CAS  Google Scholar 

  • Domínguez-Borràs J, Garcia-Garcia M, Escera C (2008) Negative emotional context enhances auditory novelty processing. Neuroreport 19:503–507

    PubMed  Google Scholar 

  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374

    Google Scholar 

  • Draganova R, Eswaran H, Murphy P, Huotilainen M, Lowery C, Preissl H (2005) Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. Neuroimage 28:354–361

    PubMed  Google Scholar 

  • Dyson BJ, Alain C, He Y (2005) I’ve heard it all before: perceptual invariance represented by early cortical auditory-evoked responses. Brain Res Cogn Brain Res 23:457–460

    PubMed  Google Scholar 

  • Escera C, Corral MJ (2007) Role of mismatch negativity and novelty-P3 in involuntary auditory attention. J Psychophysiol 21:251–264

    Google Scholar 

  • Escera C, Grau C (1996) Short-term replicability of the mismatch negativity. Electroencephalogr Clin Neurophysiol 100:549–554

    PubMed  CAS  Google Scholar 

  • Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590–604

    PubMed  CAS  Google Scholar 

  • Escera C, Alho K, Schröger E, Winkler I (2000a) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5:151–166

    PubMed  CAS  Google Scholar 

  • Escera C, Yago E, Polo MD, Grau C (2000b) The individual replicability of mismatch negativity at short and long inter-stimulus intervals. Clin Neurophysiol 111:546–551

    PubMed  CAS  Google Scholar 

  • Escera C, Yago E, Alho K (2001) Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. Eur J Neurosci 14:877–883

    PubMed  CAS  Google Scholar 

  • Fabiani M, Gratton G, Federmeier KD (2007) Event-related brain potentials: methods, theory, and applications. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, 3rd edn. Cambridge University Press, Cambridge, pp 85–119

    Google Scholar 

  • Fischer C, Morlet D, Bouchet P, Luaute J, Jourdan C, Salord F (1999) Mismatch negativity and late auditory evoked potentials in comatose patients. Clin Neurophysiol 110:1601–1610

    PubMed  CAS  Google Scholar 

  • Fischer C, Luauté J, Némoz C, Morlet D, Kirkorian G, Mauguière F (2006) Improved prediction of awakening or non-awakening from severe anoxic coma using tree-based classification analysis. Crit Care Med 34:1–5

    Google Scholar 

  • Folstein JR, Van Petten C (2008) Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45:152–170

    PubMed  PubMed Central  Google Scholar 

  • Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6:78–84

    PubMed  Google Scholar 

  • Friedman D (2012) The components of aging. In: Luck SJ, Kappenman ES (eds) The Oxford handbook of event-related potential components. Oxford University Press, New York, p 512

    Google Scholar 

  • Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25:355–373

    PubMed  CAS  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Phil Trans R Soc Lond Ser B Biol Sci 360:815–836

    Google Scholar 

  • Friston K, Kiebel S (2009) Cortical circuits for perceptual inference. Neur Netw 22:1093–1104

    Google Scholar 

  • Gaffney M, Eichwald J, Grosse SD, Mason CA (2010) Identifying infants with hearing loss -United States, 1999–2007. Morb Mortal Wkly Rep 59:220–223

    Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A 78:2643–2647

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garagnani M, Wennekers T, Pulvermüller F (2008) A neuroanatomically grounded Hebbian-learning model of attention-language interactions in the human brain. Eur J Neurosci 27:492–513

    PubMed  PubMed Central  Google Scholar 

  • Garagnani M, Pulvermüller F (2011) From sounds to words: a neurocomputational model of adaptation, inhibition and memory processes in auditory change detection. Neuroimage 54:170–181, Erratum in: Garagnani M, Pulvermüller F (2011) Neuroimage 55:435–436

    PubMed  Google Scholar 

  • Garcia-Larrea L, Lukaszewicz AC, Mauguiere F (1992) Revisiting the oddball paradigm. Non-target vs. neutral stimuli and the evaluation of ERP attentional effects. Neuropsychology 30:723–741

    CAS  Google Scholar 

  • Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 120:453–463

    PubMed  PubMed Central  Google Scholar 

  • Giard MH, Perrin F, Pernier J, Peronnet F (1988) Several attention-related waveforms in auditory areas: a tropographical study. Electroencephalogr Clin Neurophysiol 69:371–384

    PubMed  CAS  Google Scholar 

  • Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in processing of auditory stimulus deviance. A topographic ERP study. Psychophysiology 27:627–640

    PubMed  CAS  Google Scholar 

  • Giard MH, Collet L, Bouchet P, Pernier J (1994) Auditory selective attention in the human cochlea. Brain Res 633:353–356

    PubMed  CAS  Google Scholar 

  • Godey B, Schwartz D, de Graaf JB, Chauvel P, Liegeois-Chauvel C (2001) Neuromagnetic source localizationof auditoryevokedfields and intracerebral evoked potentials: a comparison of data in the same patients. Clin Neurophysiol 112:1850–1859

    PubMed  CAS  Google Scholar 

  • Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5:887–892

    PubMed  CAS  Google Scholar 

  • Grimm S, Escera C, Slabu LM, Costa-Faidella J (2011) Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology 48:377–384

    PubMed  Google Scholar 

  • Grimm S, Escera C (2012) Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int J Psychophysiol 85:88–92

    PubMed  Google Scholar 

  • Grimm S, Recasens M, Althen H, Escera C (2012) Ultrafast tracking of sound location changes as revealed by human auditory evoked potentials. Biol Psychol 89:232–239

    PubMed  Google Scholar 

  • Guérit JM (2005) Evoked potentials in severe brain injury. Prog Brain Res 150:415–426

    PubMed  Google Scholar 

  • Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388

    PubMed  CAS  PubMed Central  Google Scholar 

  • Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T (2005) Event-related brain potential correlates of human auditory sensory memory-trace formation. J Neurosci 25:10494–10501

    PubMed  CAS  Google Scholar 

  • Hagoort P (2008) The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. Phil Trans R Soc Lond B Biol Sci 363:1055–1069

    Google Scholar 

  • Handy TC (2005) Event related potentials: a methods handbook. Bradford/MIT Press, Cambridge, MA

    Google Scholar 

  • Hansen JC, Hillyard SA (1980) Endogenous brain potentials associated with selective auditory attention. Electroencephalogr Clin Neurophysiol 49:277–290

    PubMed  CAS  Google Scholar 

  • Hansen PC, Kringelbach ML, Salmelin R (eds) (2010) MEG: an introduction to methods. Oxford University Press, New York

    Google Scholar 

  • Helmholtz H (1860/1962) Handbuch der Physiologischen Optik. Southall JPC (ed) English Translation vol 3. Dover, New York

    Google Scholar 

  • Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180

    PubMed  CAS  Google Scholar 

  • Hölig C, Berti S (2010) To switch or not to switch: brain potential indices of attentional control after task-relevant and task-irrelevant changes of stimulus features. Brain Res 1345:164–175

    PubMed  Google Scholar 

  • Horváth J, Bendixen A (2012) Preventing distraction by probabilistic cueing. Int J Psychophysiol 83:342–347

    PubMed  Google Scholar 

  • Horváth J, Winkler I (2010) Distraction in a continuous-stimulation detection task. Biol Psychol 83:229–238

    PubMed  Google Scholar 

  • Horváth J, Czigler I, Sussman E, Winkler I (2001) Simultaneously active pre-attentive representations of local and global rules for sound sequences. Cogn Brain Res 12:131–144

    Google Scholar 

  • Horváth J, Czigler I, Winkler I, Teder-Sälejärvi WA (2007) The temporal window of integration in elderly and young adults. Neurobiol Aging 28:964–975

    PubMed  Google Scholar 

  • Horváth J, Maess B, Berti S, Schröger E (2008a) Primary motor area contribution to attentional reorienting after distraction. Neuroreport 19:443–446

    PubMed  Google Scholar 

  • Horváth J, Winkler I, Bendixen A (2008b) Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction? Biol Psychol 79:139–147

    PubMed  Google Scholar 

  • Horváth J, Sussman E, Winkler I, Schröger E (2011) Preventing distraction: assessing stimulus-specific and general effects of the predictive cueing of deviant auditory events. Biol Psychol 87:35–48

    PubMed  PubMed Central  Google Scholar 

  • Itoh K, Yumoto M, Uno A, Kurauchi T, Kaga K (2000) Temporal stream of cortical representation for auditory spatial localization in human hemispheres. Neurosci Lett 292:215–219

    PubMed  CAS  Google Scholar 

  • Javitt DC, Grochowski S, Shelley AM, Ritter W (1998) Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalogr Clin Neurophysiol 108:143–153

    PubMed  CAS  Google Scholar 

  • Jildenstål PK, Hallén JL, Rawal N, Gupta A, Berggren L (2011) Effect of auditory evoked potential-guided anesthesia on consumption of anesthetics and early postoperative cognitive dysfunction: a randomized controlled trial. Eur J Anaesth 28:213–219

    Google Scholar 

  • Jing H, Benasich AA (2006) Brain responses to tonal changes in the first two years of life. Brain Dev 28:247–256

    PubMed  PubMed Central  Google Scholar 

  • Jones LA, Baxter RJ (1988) Changes in the auditory middle latency responses during all-night sleep recording. Brit J Audiol 22:279–285

    CAS  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82:35–45

    Google Scholar 

  • Kane NM, Curry SH, Butler SR, Cummings BH (1993) Electrophysiological indicator of awakening from coma. Lancet 341:688

    PubMed  CAS  Google Scholar 

  • Kaseda Y, Tobimatsu S, Morioka T, Kato M (1991) Auditory middle-latency responses in patients with localized and non-localized lesions of the central nervous system. J Neurol 238:427–432

    PubMed  CAS  Google Scholar 

  • Kaya E, Elhilali M (2013) A model of auditory deviance detection. In: Proceedings of 2013 47th Annual Conference on Information Science and System (CISS), Baltimore, MD, doi:10.1109/CISS.2013.6552254

    Google Scholar 

  • Knight RT (1984) Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol 59:9–20

    PubMed  CAS  Google Scholar 

  • Knight RT (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259

    PubMed  CAS  Google Scholar 

  • Koch D, Sanders LD, Neville HJ (2005) An event-related potential study of selective auditory attention in children and adults. J Cogn Neurosci 17:605–622

    Google Scholar 

  • Koelsch S, Siebel WA (2005) Towards a neural basis of music perception. Trends Cogn Sci 9:578–584

    PubMed  Google Scholar 

  • Kraus N, Ozdamar O, Hier D, Stein L (1982) Auditory middle latency responses (MLRs) in patients with cortical lesions. Electroencephalogr Clin Neurophysiol 54:275–287

    PubMed  CAS  Google Scholar 

  • Kuhnle GE, Hornuss C, Lenk M, Salam AP, Wiepcke D, Edelmann-Gahr V, Flake G, Daunderer M, Oberhauser M, Müller HH, Feuerecker M (2013) Impact of propofol on mid-latency auditory-evoked potentials in children. Br J Anaesth 110:1001–1009

    PubMed  CAS  Google Scholar 

  • Kujala T, Tervaniemi M, Schröger E (2007) The mismatch negativity in cognitive and clinical neuroscience: theoretical and methodological considerations. Biol Psychol 74:1–19

    PubMed  Google Scholar 

  • Kushnerenko EV (2003) Maturation of the cortical auditory event-related brain potentials in infancy. Doctoral dissertation, University of Helsinki, Helsinki. https://helda.helsinki.fi/handle/10138/19818

  • Kushnerenko E, Van den Bergh BRH, Winkler I (2013) Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence. Front Psychol 4:595

    Google Scholar 

  • Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Ann Rev Psychol 62:621–647

    Google Scholar 

  • Lavie N (1995) Perceptual load as a necessary condition for selective attention. J Exp Psychol Hum Percept Perform 21:451–468

    PubMed  CAS  Google Scholar 

  • Lieder F, Daunizeau J, Garrido MJ, Friston KJ, Stephan KE (2013) Modelling trial-by-trial changes in the mismatch negativity. PLoS Comput Biol 9:e1002911

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lü ZL, Williamson SJ, Kaufman L (1992) Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science 258:1668–1670

    PubMed  Google Scholar 

  • Luck SJ (2005) An introduction to the event -related potential technique. MIT Press, Cambridge, MA

    Google Scholar 

  • Luck SJ, Kappenman ES (eds) (2012) Oxford handbook of event-related potential components. Oxford University Press, New York

    Google Scholar 

  • Lustig LR, Niparko J, Minor LB, Zee DS (eds) (2003) Clinical neurotology: diagnosing and managing disorders of hearing, balance and the facial nerve. Martin Dunitz, London

    Google Scholar 

  • Machado C, Valdés-Sosa P, García-Tigera J, Virues T, Biscay R, Miranda J, Coutin P, Román J, García O (1991) Brain-stem auditory evoked potentials and brain death. Electronecephalogr Clin Neurophysiol 80:392–398

    Google Scholar 

  • Mäkelä JP, Hari R, Leinonen L (1988) Magnetic responses of the human auditory cortex to noise/square wave transitions. Electroencephalogr Clin Neurophysiol 69:423–430

    PubMed  Google Scholar 

  • May P, Tiitinen H (2001) Human cortical processing of auditory events over time. Neuroreport 12:573–577

    PubMed  CAS  Google Scholar 

  • May PJC, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122

    PubMed  Google Scholar 

  • May P, Tiitinen H, Ilmoniemi RJ, Nyman G, Taylor JG, Näätänen R (1999) Frequency change detection in human auditory cortex. J Comput Neurosci 6:99–120

    PubMed  CAS  Google Scholar 

  • Melara RD, Rao A, Tong Y (2002) The duality of selection: excitatory and inhibitory processes in auditory selective attention. J Exp Psychol Hum Percept Perform 28:279–306

    PubMed  Google Scholar 

  • Meyer M, Elmer S, Baumann S, Jancke L (2007) Short-term plasticity in the auditory system: differential neural responses to perception and imagery of speech and music. Restor Neurol Neurosci 25:411–431

    PubMed  Google Scholar 

  • Mondragón-Maya A, Bernal-Hernández J, Yáñez-Téllez G, Rodríguez-Agudelo Y (2011) Mismatch negativity (MMN) and schizophrenia: a revision. Actas Esp Psiquiatr 39:363–373

    PubMed  Google Scholar 

  • Müller MM, Keil A, Kissler J, Gruber T (2001) Suppression of the auditory middle-latency response and evoked gamma-band response in a paired-click paradigm. Exp Brain Res 136:474–479

    PubMed  Google Scholar 

  • Munka L, Berti S (2006) Examining task-dependencies of different attentional processes as reflected in the P3a and reorienting negativity component of the human event-related brain potential. Neurosci Lett 396:177–181

    PubMed  CAS  Google Scholar 

  • Näätänen R (1982) Processing negativity: an evoked-potential reflection of selective attention. Psychophysiology 24:375–425

    Google Scholar 

  • Näätänen R (1990) The role of attention in auditory information processing as revealed by event related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–288

    Google Scholar 

  • Näätänen R (1992) Attention and brain function. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Näätänen R, Escera C (2000) Mismatch negativity (MMN): clinical and other applications. Audiol Neurootol 5:105–110

    PubMed  Google Scholar 

  • Näätänen R, Michie PT (1979) Early selective attention effects on the evoked potential. A critical review and reinterpretation. Biol Psychol 8:81–136

    PubMed  Google Scholar 

  • Näätänen R, Picton TW (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425

    PubMed  Google Scholar 

  • Näätänen R, Winkler I (1999) The concept of auditory stimulus representation in cognitive neuroscience. Psychol Bull 125:826–859

    PubMed  Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329

    Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1980) Brain potential correlates of voluntary and involuntary attention. In: Kornhuber AHM, Deecke L (eds) Motivation, motor and sensory processes of the brain: electrical potentials, behavior and clinical use. Elsevier, Amsterdam, pp 343–348

    Google Scholar 

  • Näätänen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) ‘Primitive intelligence’ in the auditory cortex. Trends Neurosci 24:283–288

    PubMed  Google Scholar 

  • Näätänen R, Kujala T, Winkler I (2011) Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology 48:4–22

    PubMed  Google Scholar 

  • Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The Mismatch Negativity (MMN) – a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 123:424–458

    PubMed  Google Scholar 

  • Nagarajan S, Gabriel RA, Herman A (2012) Magnetoencephalography. In: Poeppel D, Overath T, Popper AN, Fay RR (eds) The human auditory cortex. Springer handbook of auditory research, vol 43. Springer, New York, pp 97–128

    Google Scholar 

  • Ninomiya H, Onitsuka T, Chen CH, Kinukawa N (1997) Possible overlapping potentials of the auditory P50 in humans: factor analysis of middle latency auditory evoked potentials. Electroencephalogr Clin Neurophysiol 104:23–30

    PubMed  CAS  Google Scholar 

  • Norman DA (1968) Toward a theory of memory and attention. Psychol Rev 75:522–536

    Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford

    Google Scholar 

  • Öhman A (1979) The orienting response, attention and learning: an information processing perspective. In: Kimmel HD, van Olst EH, Orlebeke JF (eds) The orienting reflex in humans. Erlbaum, Hillsdale, pp 443–471

    Google Scholar 

  • Okita T (1979) Event-related potentials and selective attention to auditory stimuli varying in pitch and localization. Biol Psychol 9:271–284

    PubMed  CAS  Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, Lütkenhöner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 69:160–170

    PubMed  CAS  Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, Lütkenhöner B (1989a) Neuromagnetic evidence of an ampliotopic organization of the human auditory cortex. Electroencephalogr Clin Neurophysiol 72:225–231

    PubMed  CAS  Google Scholar 

  • Pantev C, Hoke M, Lütkenhöner B, Lehnertz K (1989b) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246:486–488

    PubMed  CAS  Google Scholar 

  • Pantev C, Makeig S, Hoke M, Galambos R, Hampson S, Gallen C (1991) Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci U S A 88:8996–9000

    PubMed  CAS  PubMed Central  Google Scholar 

  • Picton TW (2010) Human auditory evoked potentials. Plural Publishing, San Diego

    Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    PubMed  PubMed Central  Google Scholar 

  • Ponton CW, Eggermont JJ, Kwong B, Don M (2000) Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clin Neurophysiol 111:220–236

    PubMed  CAS  Google Scholar 

  • Ponton C, Eggermont JJ, Khosla D, Kwong B, Don M (2002) Maturation of human central auditory system activity: separating auditory evoked potentials by dipole source modeling. Clin Neurophysiol 113:407–420

    PubMed  Google Scholar 

  • Pritchard WS, Shappell SA, Brandt ME (1991) Psychophysiology of N200/N400: a review and classification scheme. In: Jennings JR, Ackles PK (eds) Advances in psychophysiology: a research annual, vol 4. Jessica Kingsley, London, pp 43–106

    Google Scholar 

  • Rees A, Green GG, Kay RH (1986) Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hear Res 23:123–133

    PubMed  CAS  Google Scholar 

  • Regan D (1989) Human brain electrophysiology. Elsevier, New York

    Google Scholar 

  • Rinne T, Sarkka A, Degerman A, Schröger E, Alho K (2006) Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Res 1077:135–143

    PubMed  CAS  Google Scholar 

  • Robinette MS, Glatkke TJ (2007) Otoacustic emissions: clinical applications, 3rd edn. Thieme, New York

    Google Scholar 

  • Salisbury DF (2012) Finding the missing stimulus mismatch negativity (MMN): emitted MMN to violations of an auditory gestalt. Psychophysiology 49:544–548

    PubMed  PubMed Central  Google Scholar 

  • Sams M, Alho K, Näätänen R (1983) Sequential effects in the ERP in discriminating two stimuli. Biol Psychol 17:41–58

    PubMed  CAS  Google Scholar 

  • SanMiguel I, Corral MJ, Escera C (2008) When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm. J Cogn Neurosci 20:1131–1145

    PubMed  Google Scholar 

  • SanMiguel I, Widmann A, Bendixen A, Trujillo-Barreto N, Schröger E (2013) Hearing silences: human auditory processing relies on pre-activation of sound-specific brain activity patterns. J Neurosci 33:8633–8639

    PubMed  CAS  Google Scholar 

  • Schröger E (1996) Neural mechanism for involuntary attention shifts to changes in auditory stimulation. J Cogn Neurosci 8:527–539

    PubMed  Google Scholar 

  • Schröger E, Wolff C (1998a) Behavioral and electrophysiological effects of task-irrelevant sound change: a new distraction paradigm. Cogn Brain Res 71:71–87

    Google Scholar 

  • Schröger E, Wolff C (1998b) Attentional orienting and re-orienting is indicated by human event-related brain potentials. Neuroreport 9:3355–3358

    PubMed  Google Scholar 

  • Seki H, Kimura I, Ohnuma A, Saso S, Kogure K (1993) The auditory evoked middle-latency responses (MLRs): their normative variation and generators. Tohoku J Exp Med 170:157–167

    PubMed  CAS  Google Scholar 

  • Simons RF, Graham FK, Miles MA, Chen X (2001) On the relationship of P3a and the Novelty-P3. Biol Psychol 56:207–218

    PubMed  CAS  Google Scholar 

  • Slabu LM, Escera C, Grimm S, Costa-Faidella J (2010) Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. Eur J Neurosci 32:859–865

    PubMed  Google Scholar 

  • Snyder JS, Alain C, Picton TW (2006) Effects of attention on neuroelectric correlates of auditory stream segregation. J Cogn Neurosci 18:1–13

    PubMed  Google Scholar 

  • Sokolov EN (1963) Higher nervous functions: the orienting reflex. Ann Rev Physiol 25:545–580

    CAS  Google Scholar 

  • Sonnadara RR, Alain C, Trainor LJ (2006) Occasional changes in sound location enhance middle latency evoked responses. Brain Res 1076:187–192

    PubMed  CAS  Google Scholar 

  • Squires NK, Squires KC, Hillyard SA (1975) Two varieties of long-latency positive waves by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol 38:387–401

    PubMed  CAS  Google Scholar 

  • Stapells DR, Oates P (1997) Estimation of the pure-tone audiogram by the auditory brainstem response: a review. Audiol Neurootol 2:257–280

    PubMed  CAS  Google Scholar 

  • Stapells D, Picton T, Durieux-Smith A (1993) Electrophysiologic measures of frequency-specific auditory function. In: Jacobson JT (ed) Principles and applications of auditory evoked potentials. Allyn & Bacon, New York, pp 251–283

    Google Scholar 

  • Starr A, Don M (1988) Brain potentials evoked by auditory stimuli. In: Picton TW (ed) Handbook of electroencephalography and clinical neurophysiology. Elsevier, Amsterdam

    Google Scholar 

  • Sussman E (2007) A new view on the MMN and attention debate: the role of context in processing auditory events. J Psychophysiol 21:164–175

    Google Scholar 

  • Sussman E, Winkler I, Schröger E (2003) Top-down control over involuntary attention-switching in the auditory modality. Psychon Bull Rev 10:630–637

    PubMed  CAS  Google Scholar 

  • Szalárdy O, Bőhm T, Bendixen A, Winkler I (2013) Event-related potential correlates of sound organization: early sensory and late cognitive effects. Biol Psychol 93:97–104

    PubMed  Google Scholar 

  • Szirtes G, Páczos B, Lörincz A (2005) Neural Kalman filter. Neurocomputing 65:349–355

    Google Scholar 

  • Teder W, Alho K, Reinikainen K, Näätänen R (1993) Interstimulus interval and the selective-attention effect on auditory ERPs: “N1 enhancement” versus processing negativity. Psychophysiology 30:71–81

    PubMed  CAS  Google Scholar 

  • Tong Y, Melara RD, Rao A (2009) P2 enhancement from auditory discrimination training is associated with improved reaction times. Brain Res 1297:80–88

    PubMed  CAS  Google Scholar 

  • Treisman AM (1964) Selective attention in man. Br Med Bull 20:12–16

    PubMed  CAS  Google Scholar 

  • Treisman A (1998) Feature binding, attention and object perception. Philos Trans R Soc Lond B Biol Sci 353:1295–1306

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tremblay KL, Kraus N (2002) Auditory training induces asymmetrical changes in cortical neural activity. J Speech Lang Hear Res 45:564–572

    PubMed  Google Scholar 

  • Tremblay K, Kraus N, McGee T, Ponton C, Otis B (2001) Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear Hear 22:79–90

    PubMed  CAS  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398

    PubMed  CAS  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453

    PubMed  CAS  Google Scholar 

  • Van den Brink D, Hagoort P (2004) Influence of semantic and syntactic context constraints on lexical selection and integration in spoken-word comprehension as revealed by ERPs. J Cogn Neurosci 16:1068–1084

    PubMed  Google Scholar 

  • Vanhatalo S, Voipio J, Kaila K (2005) Infraslow EEG activity. In: Electroencephalography. Basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 489–494

    Google Scholar 

  • Wacongne C, Labyt E, van Wassenhove V, Bekinschtein T, Naccache L, Dehaene S (2011) Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci U S A 108:20754–20759

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wacongne C, Changeux JP, Dehaene S (2012) A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci 32:3665–3678

    PubMed  CAS  Google Scholar 

  • Winkler I (2007) Interpreting the mismatch negativity. J Psychophysiol 21:147–163

    Google Scholar 

  • Winkler I, Czigler I (2012) Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. Int J Psychophysiol 83:132–143

    PubMed  Google Scholar 

  • Winkler I, Tervaniemi M, Näätänen R (1997) Two separate codes for missing fundamental pitch in the auditory cortex. J Acoust Soc Am 102:1072–1082

    PubMed  CAS  Google Scholar 

  • Winkler I, Teder-Sälejärvi WA, Horváth J, Näätänen R, Sussman E (2003) Human auditory cortex tracks task-irrelevant sound sources. Neuroreport 14:2053–2056

    PubMed  Google Scholar 

  • Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cog Sci 13:532–540

    Google Scholar 

  • Woldorff MG, Hillyard SA (1991) Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol 79:170–191

    PubMed  CAS  Google Scholar 

  • Woldorff MG, Hansen JC, Hillyard SA (1987) Evidence for effects of selective attention in the mid-latency range of the human auditory event-related potential. In: Johnson R Jr, Rohrbaugh JW, Parasuraman R (eds) Current trends in event-related potential research. Elsevier, Amsterdam, pp 146–154

    Google Scholar 

  • Woldorff MG, Gallen CC, Hampson SA, Hillyard SA, Pantev C, Sobel D, Bloom FE (1993) Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci U S A 90:8722–8726

    PubMed  CAS  PubMed Central  Google Scholar 

  • Woods DL, Clayworth CC (1987) Scalp topography dissociate N1 and Nd components during selective attention. In: Johnson R Jr, Rohrbaugh JW, Parasuraman R (eds) Current trends in event-related potential research. Elsevier, Amsterdam, pp 155–160

    Google Scholar 

  • Woods DL, Knight RT, Scabini D (1993) Anatomical substrates of auditory selective attention: behavioral and electrophysiological effects of posterior association cortex lesions. Cogn Brain Res 1:227–240

    CAS  Google Scholar 

  • Wu J, Yu Z, Mai X, Wei J, Luo Y (2011) Pitch and loudness information encoded in auditory imagery as revealed by event-related potentials. Psychophysiol 48:415–419

    Google Scholar 

  • Wunderlich JL, Cone-Wesson BK, Shepherd R (2006) Maturation of the cortical auditory evoked potential in infants and young children. Hear Res 212:185–202

    PubMed  Google Scholar 

  • Yabe H, Tervaniemi M, Reinikainen K, Näätänen R (1997) Temporal window of integration revealed by MMN to sound omission. Neuroreport 8:1971–1974

    PubMed  CAS  Google Scholar 

  • Yabe H, Sato Y, Sutoh T, Hiruma T, Shinozaki N, Nashida T, Saito F, Kaneko S (1999) The duration of the integrating windows in auditory sensory memory. Electroencephalogr Clin Neurophysiol Evoked Pot Magn Fields Suppl 49:166–169

    CAS  Google Scholar 

  • Yago E, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport 12:2583–2587

    PubMed  CAS  Google Scholar 

  • Yago E, Escera C, Alho K, Giard MH, Serra-Grabulosa JM (2003) Spatiotemporal dynamics of the auditory novelty-P3 event-related brain potential. Cogn Brain Res 16:383–390

    Google Scholar 

  • Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423

    PubMed  CAS  Google Scholar 

  • Yvert B, Fischer C, Bertrand O, Pernier J (2005) Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. Neuroimage 28:140–153

    PubMed  Google Scholar 

  • Zwicker E, Fastl H (1990) Psychoacoustics. Facts and models. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Winkler, I., Denham, S., Escera, C. (2013). Auditory Event-related Potentials. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_99-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_99-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics