Skip to main content

Gamma Rhythm, Neural Population Models of the

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

The classical definition of gamma activity in the electro- and magnetoencephalogram (EEG/MEG) includes all high frequency (>30 Hz) oscillations of brain activity. One can further distinguish the “gamma rhythm” proper, meaning band-limited oscillations of 30–80 Hz with a typical frequency of about 40 Hz, from so-called high gamma (80–200 Hz) broadband and other, even faster, activity. These high frequency rhythms have been scrutinized extensively, since they become prominent during cognitive tasks. In particular, they often appear to phase lock across distant brain sites, which has led to speculations about their role in integrating distributed neural activity. Neural population models (NPMs) have been used to address the genesis and function of gamma rhythmicity: On one hand, the underlying physiology and the dynamic mechanisms by which gamma activity emerges have been studied in detail. On the other hand, the cognitive aspect has been investigated with functional processing...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baird B (1986) Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb. Physica D 22(1–3):150–175

    Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56

    CAS  PubMed  Google Scholar 

  • Başar E (2013) A review of gamma oscillations in healthy subjects and in cognitive impairment. Int J Psychophysiol 90(2):99–117

    PubMed  Google Scholar 

  • Bastiaansen M, Hagoort P (2006) Oscillatory neuronal dynamics during language comprehension. In: Neuper C, Klimesch W (eds) Event-Related Dynamics of Brain Oscillations Progress in Brain Research, vol 159. Elsevier, Amsterdam, pp 179–196

    Google Scholar 

  • Berens P et al (2008) Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Front Syst Neurosci 2:2

    PubMed Central  PubMed  Google Scholar 

  • Bojak I, Liley DTJ (2005) Modeling the effects of anesthesia on the electroencephalogram. Phys Rev E 71(4 Pt 1):041902

    CAS  Google Scholar 

  • Bojak I, Liley DTJ (2007) Self-organized 40 Hz synchronization in a physiological theory of EEG. Neurocomputing 70(10–12):2085–2090

    Google Scholar 

  • Bressler SL, Freeman WJ (1980) Frequency analysis of olfactory system EEG in cat, rabbit, and rat. Electroencephalogr Clin Neurophysiol 50(1–2):19–24

    CAS  PubMed  Google Scholar 

  • Bressler SL, Coppola R, Nakamura R (1993) Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366(6451):153–156

    CAS  PubMed  Google Scholar 

  • Brindley GS, Craggs MD (1972) The electrical activity in the motor cortex that accompanies voluntary movement. J Physiol 223(1):28P–29P

    CAS  PubMed  Google Scholar 

  • Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90(1):415–430

    PubMed  Google Scholar 

  • Buzsáki G, Chrobak JJ (1995) Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol 5(4):504–510

    PubMed  Google Scholar 

  • Campbell S, Wang DL (1996) Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators. IEEE Trans Neural Netw 7(3):541–554

    CAS  PubMed  Google Scholar 

  • Castelo-Branco M, Neuenschwander S, Singer W (1998) Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J Neurosci 18(16):6395–6410

    CAS  PubMed  Google Scholar 

  • Chapman CL, Wright JJ, Bourke PD (2002) Spatial eigenmodes and synchronous oscillation: co-incidence detection in simulated cerebral cortex. J Math Biol 45(1):57–78

    PubMed  Google Scholar 

  • Crone NE, Hao L (2002) The functional significance of event-related spectral changes (ERD/ERS) from the perspective of electrocorticography. In: Reisin RC et al (eds) Advances in Clinical Neurophysiology, Supplements to Clinical Neurophysiology, vol 54. Elsevier, Amsterdam, pp 435–442

    Google Scholar 

  • Crone NE, Korzeniewska A, Franaszczuk PJ (2011) Cortical gamma responses: searching high and low. Int J Psychophysiol 79(1):9–15

    PubMed Central  PubMed  Google Scholar 

  • Curio G (2005) Ultrafast EEG activities. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Destexhe A (1994) Oscillations, complex spatiotemporal behavior, and information transport in networks of excitatory and inhibitory neurons. Phys Rev E 50(2):1594–1606

    Google Scholar 

  • Dzhala VI, Staley KJ (2004) Mechanisms of fast ripples in the hippocampus. J Neurosci 24(40):8896–8906

    CAS  PubMed  Google Scholar 

  • Engel AK et al (1992) Temporal coding in the visual-cortex – new vistas on integration in the nervous-system. Trends Neurosci 15(6):218–226

    CAS  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10):704–716

    CAS  PubMed  Google Scholar 

  • Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105–118

    CAS  PubMed  Google Scholar 

  • Foster BL, Dastjerdi M, Parvizi J (2012) Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing. Proc Natl Acad Sci USA 109(38):15514–15519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freeman WJ (2003a) A neurobiological theory of meaning in perception part II: spatial patterns of phase in gamma EEGs from primary sensory cortices reveal the dynamics of mesoscopic wave packets. Int J Bifurc Chaos 13(9):2513–2535

    Google Scholar 

  • Freeman WJ (2003b) A neurobiological theory of meaning in perception part I: information and meaning in nonconvergent and nonlocal brain dynamics. Int J Bifurc Chaos 13(9):2493–2511

    Google Scholar 

  • Freeman WJ, Burke BC (2003) A neurobiological theory of meaning in perception part IV: multicortical patterns of amplitude modulation in gamma EEG. Int J Bifurc Chaos 13(10):2857–2866

    Google Scholar 

  • Freeman WJ, Rogers LJ (2003) A neurobiological theory of meaning in perception part V: multicortical patterns of phase modulation in gamma EEG. Int J Bifurc Chaos 13(10):2867–2887

    Google Scholar 

  • Freeman WJ, Gaál G, Jorsten R (2003) A neurobiological theory of meaning in perception part III: multiple cortical areas synchronize without loss of local autonomy. Int J Bifurc Chaos 13(10):2845–2856

    Google Scholar 

  • Frien A et al (1994) Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. NeuroReport 5(17):2273–2277

    CAS  PubMed  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480

    PubMed  Google Scholar 

  • Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209–224

    CAS  PubMed  Google Scholar 

  • Fries P et al (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508):1560–1563

    CAS  PubMed  Google Scholar 

  • Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30(7):309–316

    CAS  PubMed  Google Scholar 

  • Fries P, Scheeringa R, Oostenveld R (2008) Finding gamma. Neuron 58(3):303–305

    CAS  PubMed  Google Scholar 

  • Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78(4):2643–2647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gollo LL, Mirasso C, Villa AEP (2010) Dynamic control for synchronization of separated cortical areas through thalamic relay. Neuroimage 52(3):947–955

    PubMed  Google Scholar 

  • Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus-dependent synchronization of neuronal assemblies. Neural Comput 5(4):550–569

    Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86(5):1698–1702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gray CM et al (1989) Oscillatory responses in cat visual-cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–337

    CAS  PubMed  Google Scholar 

  • Gregoriou GG et al (2009) High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 324(5931):1207–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gross J et al (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101(35):13050–13055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grossberg S, Somers D (1991) Synchronized oscillations during cooperative feature linking in a cortical model of visual perception. Neural Netw 4(4):453–466

    Google Scholar 

  • Hasenstaub A et al (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47(3):423–435

    CAS  PubMed  Google Scholar 

  • Havenith MN et al (2009) Measuring sub-millisecond delays in spiking activity with millisecond time-bins. Neurosci Lett 450(3):296–300

    CAS  PubMed  Google Scholar 

  • Hirakura Y et al (1996) Dynamic linking among neural oscillators leads to flexible pattern recognition with figure-ground separation. Neural Netw 9(2):189–209

    Google Scholar 

  • Horn D, Sagi D, Usher M (1991) Segmentation, binding, and illusory conjunctions. Neural Comput 3(4):510–525

    Google Scholar 

  • Hughes JR (2008) Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav 13(1):25–31

    PubMed  Google Scholar 

  • Jasper HH, Andrews HL (1938) Electroencephalography. III. Normal differentiation of occipital and precentral regions in man. Arch Neurol Psychiat 39:96–115

    Google Scholar 

  • Kohling R, Staley K (2011) Network mechanisms for fast ripple activity in epileptic tissue. Epilepsy Res 97(3):318–323

    PubMed Central  PubMed  Google Scholar 

  • König P, Schillen TB (1991) Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization. Neural Comput 3(2):155–166

    Google Scholar 

  • König P, Janosch B, Schillen TB (1992) Stimulus-dependent assembly formation of oscillatory responses: III. Learning. Neural Comput 4(5):666–681

    Google Scholar 

  • König P et al (1995) How precise is neuronal synchronization? Neural Comput 7(3):469–485

    PubMed  Google Scholar 

  • Lachaux J-P et al (2007) Relationship between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG. Hum Brain Mapp 28(12):1368–1375

    PubMed  Google Scholar 

  • Lee K–H et al (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev 41(1):57–78

    PubMed  Google Scholar 

  • Liley DTJ, Cadusch PJ, Dafilis MP (2002) A spatially continuous mean field theory of electrocortical activity. Network Comput Neural Syst 13(1):67–113

    Google Scholar 

  • Lima B et al (2010) Synchronization dynamics in response to plaid stimuli in monkey V1. Cereb Cortex 20(7):1556–1573

    PubMed Central  PubMed  Google Scholar 

  • Logothetis NK et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    CAS  PubMed  Google Scholar 

  • Malsburg C, Buhmann J (1992) Sensory segmentation with coupled neural oscillators. Biol Cybern 67(3):233–242

    PubMed  Google Scholar 

  • Manning JR et al (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29(43):13613–13620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller KJ et al (2007) Spectral changes in cortical surface potentials during motor movement. J Neurosci 27(9):2424–2432

    CAS  PubMed  Google Scholar 

  • Mukamel R et al (2005) Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309(5736):951–954

    CAS  PubMed  Google Scholar 

  • Muthukumaraswamy SD (2013) High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci 7:138

    PubMed Central  PubMed  Google Scholar 

  • Muthukumaraswamy SD et al (2010) Visual gamma oscillations and evoked responses: variability, repeatability and structural MRI correlates. Neuroimage 49(4):3349–3357

    PubMed  Google Scholar 

  • Niebur E, Hsiao SS, Johnson KO (2002) Synchrony: a neuronal mechanism for attentional selection? Curr Opin Neurobiol 12(2):190–194

    CAS  PubMed  Google Scholar 

  • Niessing J et al (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309(5736):948–951

    CAS  PubMed  Google Scholar 

  • Nikolic D (2007) Non-parametric detection of temporal order across pairwise measurements of time delays. J Comput Neurosci 22(1):5–19

    PubMed  Google Scholar 

  • Nir Y et al (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17(15):1275–1285

    CAS  PubMed  Google Scholar 

  • Ossandon T et al (2011) Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J Neurosci 31(41):14521–14530

    CAS  PubMed  Google Scholar 

  • Pesaran B et al (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5(8):805–811

    CAS  PubMed  Google Scholar 

  • Peters A (2002) Examining neocortical circuits: some background and facts. J Neurocytol 31(3–5):183–193

    CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Cooper R (1975) Frequency dependence of the transmission of the EEG from cortex to scalp. Electroencephalogr Clin Neurophysiol 38(1):93–96

    CAS  PubMed  Google Scholar 

  • Ray S, Maunsell JH (2010) Differences in gamma frequencies across visual cortex restrict their possible use in computation. Neuron 67(5):885–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ray S, Maunsell JH (2011) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol 9(4):e1000610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ray S, Ni AM, Maunsell JH (2013) Strength of gamma rhythm depends on normalization. PLoS Biol 11(2):e1001477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rennie CJ, Wright JJ, Robinson PA (2000) Mechanisms of cortical electrical activity and emergence of gamma rhythm. J Theor Biol 205(1):17–35

    CAS  PubMed  Google Scholar 

  • Robinson PA (2005) Propagator theory of brain dynamics. Phys Rev E 72(1):011904

    CAS  Google Scholar 

  • Robinson PA (2006) Patchy propagators, brain dynamics, and the generation of spatially structured gamma oscillations. Phys Rev E 73(4):041904

    CAS  Google Scholar 

  • Robinson PA, Wright JJ, Rennie CJ (1998) Synchronous oscillations in the cerebral cortex. Phys Rev E 57(4):4578–4588

    CAS  Google Scholar 

  • Robinson PA et al (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys Rev E 63(2):021903

    CAS  Google Scholar 

  • Rodriguez E et al (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397(6718):430–433

    CAS  PubMed  Google Scholar 

  • Roelfsema PR et al (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612):157–161

    CAS  PubMed  Google Scholar 

  • Sabatini SP, Solari F, Secchi L (2004) A continuum-field model of visual cortex stimulus-driven behaviour: emergent oscillations and coherence fields. Neurocomputing 57:411–433

    Google Scholar 

  • Sabatini SP, Solari F, Secchi L (2005) Emergence of oscillations and spatio-temporal coherence states in a continuum-model of excitatory and inhibitory neurons. Biosystems 79(1–3):101–108

    PubMed  Google Scholar 

  • Schillen TB, König P (1991) Stimulus-dependent assembly formation of oscillatory responses: II. Desynchronization. Neural Comput 3(2):167–178

    Google Scholar 

  • Schillen TB, König P (1994) Binding by temporal structure in multiple feature domains of an oscillatory neuronal network. Biol Cybern 70(5):397–405

    CAS  PubMed  Google Scholar 

  • Schneider G, Nikolic D (2006) Detection and assessment of near-zero delays in neuronal spiking activity. J Neurosci Methods 152(1–2):97–106

    CAS  PubMed  Google Scholar 

  • Schoffelen JM, Oostenveld R, Fries P (2005) Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308(5718):111–113

    CAS  PubMed  Google Scholar 

  • Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8(7):575–592

    CAS  PubMed  Google Scholar 

  • Schroeder CE et al (2001) Somatosensory input to auditory association cortex in the macaque monkey. J Neurophysiol 85(3):1322–1327

    CAS  PubMed  Google Scholar 

  • Schuster HG, Wagner P (1990) A model for neuronal oscillations in the visual cortex. Biol Cybern 64(1):77–85

    CAS  PubMed  Google Scholar 

  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1): 49–65, 111–125

    Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    CAS  PubMed  Google Scholar 

  • Spydell JD, Ford MR, Sheer DE (1979) Task dependent cerebral lateralization of the 40 Hertz EEG rhythm. Psychophysiol 16(4):347–350

    CAS  Google Scholar 

  • Steyn-Ross ML et al (2009) Modeling brain activation patterns for the default and cognitive states. Neuroimage 45(2):298–311

    PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162

    PubMed  Google Scholar 

  • Tallon-Baudry C et al (1997) Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci 17(2):722–734

    CAS  PubMed  Google Scholar 

  • Theyel BB, Llano DA, Sherman M (2010) The corticothalamocortical circuit drives higher-order cortex in the mouse. Nat Neurosci 13(1):84–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uhlhaas PJ et al (2009) Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci 3:17

    PubMed Central  PubMed  Google Scholar 

  • van Pelt S, Boomsma DI, Fries P (2012) Magnetoencephalography in twins reveals a strong genetic determination of the peak frequency of visually induced gamma-band synchronization. J Neurosci 32(10):3388–3392

    PubMed  Google Scholar 

  • Varela F et al (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239

    CAS  PubMed  Google Scholar 

  • Vicente R et al (2008) Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc Natl Acad Sci USA 105(44):17157–17162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Viriyopase A et al (2012) When long-range zero-Lag synchronization is feasible in cortical networks. Front Comput Neurosci 6:49

    PubMed Central  PubMed  Google Scholar 

  • von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54(1):29–40

    PubMed  Google Scholar 

  • Wang DL (1995) Emergent synchrony in locally coupled neural oscillators. IEEE Trans Neural Netw 6(4):941–948

    CAS  PubMed  Google Scholar 

  • Whittington MA et al (2000) Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol Ther 86(2):171–190

    CAS  PubMed  Google Scholar 

  • Womelsdorf T et al (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316(5831):1609–1612

    CAS  PubMed  Google Scholar 

  • Wright JJ (1997) EEG simulation: variation of spectral envelope, pulse synchrony and ≈40 Hz oscillation. Biol Cybern 76(3):181–194

    CAS  PubMed  Google Scholar 

  • Wright JJ (1999) Simulation of EEG: dynamic changes in synaptic efficacy, cerebral rhythms, and dissipative and generative activity in cortex. Biol Cybern 81(2):131–147

    CAS  PubMed  Google Scholar 

  • Wright JJ (2009) Generation and control of cortical gamma: findings from simulation at two scales. Neural Netw 22(4):373–384

    CAS  PubMed  Google Scholar 

  • Wright JJ (2011) Attractor dynamics and thermodynamic analogies in the cerebral cortex: synchronous oscillation, the background EEG, and the regulation of attention. Bull Math Biol 73(2):436–457

    CAS  PubMed  Google Scholar 

  • Wright JJ, Liley DTJ (1995) Simulation of electrocortical waves. Biol Cybern 72(4):347–356

    CAS  PubMed  Google Scholar 

  • Wright JJ, Bourke PD, Chapman CL (2000) Synchronous oscillation in the cerebral cortex and object coherence: simulation of basic electrophysiological findings. Biol Cybern 83(4):341–353

    CAS  PubMed  Google Scholar 

  • Wright JJ et al (2001) Toward an integrated continuum model of cerebral dynamics: the cerebral rhythms, synchronous oscillation and cortical stability. Biosystems 63(1–3):71–88

    CAS  PubMed  Google Scholar 

  • Wright JJ et al (2003) Simulated electrocortical activity at microscopic, mesoscopic, and global scales. Neuropsychopharmacol 28(S1):S80–S93

    Google Scholar 

  • Xing D et al (2012) Stochastic generation of gamma-band activity in primary visual cortex of awake and anesthetized monkeys. J Neurosci 32(40):13873–80a

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi Y, Shimizu H (1994) Pattern recognition with figure-ground separation by generation of coherent oscillations. Neural Netw 7(1):49–63

    Google Scholar 

  • Zhadin MN (1984) Rhythmic processes in the cerebral cortex. J Theor Biol 108(4):565–595

    CAS  PubMed  Google Scholar 

  • Zhadin MN (1994) Formation of rhythmic processes in the bio-electrical activity of the cerebral cortex. Biophysics 39(1):133–150

    Google Scholar 

  • Zhadin MN (1996) Rhythmicity in the EEG and global stabilization of the average level of excitation in the cerebral cortex. Behav Brain Sci 19(02):309–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Bojak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bojak, I. (2014). Gamma Rhythm, Neural Population Models of the. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_61-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_61-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics