Skip to main content

Stereo Vision, Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Models of 3D vision; Models of stereopsis

Definition

Due to the different location of the eyes in the head, objects at different distances from the observer project to slightly different locations in the two eyes. Stereo vision refers to the perception of depth based on these slight disparities between the images seen by the two eyes (Freeman 2009). This entry reviews models of stereo vision based on the real nervous systems. Stereo vision algorithms have also been developed independently within the machine vision literature, sometimes biologically inspired, but these are not within the scope of this entry.

Detailed Description

Stereo vision has two main steps: (1) extracting disparity from the retinal images and (2) perceiving depth structure from disparity. Although psychophysics experiments have probed both aspects, much more is known about the neuronal mechanisms supporting the extraction of disparity than about how and where in the brain disparity is converted into a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2(2):284–299

    Article  PubMed  CAS  Google Scholar 

  • Allenmark F, Read JCA (2011) Spatial stereoresolution for depth corrugations may be set in primary visual cortex. PLoS Comput Biol 7(8):e1002142

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anzai A, Ohzawa I, Freeman RD (1997) Neural mechanisms underlying binocular fusion and stereopsis: position vs. phase. Proc Natl Acad Sci U S A 94:5438–5443

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Assee A, Qian N (2007) Solving da Vinci stereopsis with depth-edge-selective V2 cells. Vision Res 47(20):2585–2602

    Article  PubMed Central  PubMed  Google Scholar 

  • Backus BT, Banks MS, van Ee R, Crowell JA (1999) Horizontal and vertical disparity, eye position, and stereoscopic slant perception. Vision Res 39(6):1143–1170

    Article  PubMed  CAS  Google Scholar 

  • Banks MS, Gepshtein S, Landy MS (2004) Why is spatial stereoresolution so low? J Neurosci 24(9):2077–2089

    Article  PubMed  CAS  Google Scholar 

  • Bredfeldt CE, Cumming BG (2006) A simple account of cyclopean edge responses in macaque V2. J Neurosci 26(29):7581–7596

    Article  PubMed  CAS  Google Scholar 

  • Bredfeldt CE, Read JC, Cumming BG (2009) A quantitative explanation of responses to disparity defined edges in macaque V2. J Neurophysiol 101(2):701–713

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bridge H, Cumming BG (2001) Responses of macaque V1 neurons to binocular orientation differences. J Neurosci 21(18):7293–7302

    PubMed  CAS  Google Scholar 

  • Carandini M, Heeger DJ (2012) Normalization as a canonical neural computation. Nat Rev Neurosci 13(1):51–62

    Article  CAS  Google Scholar 

  • Chen Y, Qian N (2004) A coarse-to-fine disparity energy model with both phase-shift and position-shift receptive field mechanisms. Neural Comput 16(8):1545–1577

    Article  PubMed  Google Scholar 

  • Cogan AI, Lomakin AJ, Rossi AF (1993) Depth in anticorrelated stereograms: effects of spatial density and interocular delay. Vision Res 33(14):1959–1975

    Article  PubMed  CAS  Google Scholar 

  • Cumming BG (2002) An unexpected specialization for horizontal disparity in primate primary visual cortex. Nature 418(6898):633–636

    Article  PubMed  CAS  Google Scholar 

  • Cumming BG, Parker AJ (1997) Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 389:280–283

    Article  PubMed  CAS  Google Scholar 

  • Cumming B, Parker A (2000) Local disparity not perceived depth is signaled by binocular neurons in cortical area V1 of the Macaque. J Neurosci 20(12):4758–4767

    PubMed  CAS  Google Scholar 

  • Cumming BG, Shapiro SE, Parker A (1998) Disparity detection in anticorrelated stereograms. Perception 27(11):1367–1377

    Article  PubMed  CAS  Google Scholar 

  • Durand JB, Celebrini S, Trotter Y (2007) Neural bases of stereopsis across visual field of the alert macaque monkey. Cereb Cortex 17:1260–1273

    Article  PubMed  Google Scholar 

  • Filippini HR, Banks MS (2009) Limits of stereopsis explained by local cross-correlation. J Vis 9(1):8.1–18

    Article  Google Scholar 

  • Fleet DJ (1994) Disparity from local weighted phase-correlation. Systems, man, and cybernetics, 1994. ‘Humans, information and technology’, 1994 I.E. international conference on, San Antonio

    Google Scholar 

  • Fleet DJ, Jepson AD, Jenkin MRM (1991) Phase-based disparity measurement. Comput Vis Gr Image Process Image Underst 53(2):198–210

    Google Scholar 

  • Fleet D, Wagner H, Heeger D (1996) Neural encoding of binocular disparity: energy models, position shifts and phase shifts. Vision Res 36:1839–1857

    Article  PubMed  CAS  Google Scholar 

  • Freeman R (2009) Binocular vision. In: Binder M, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin/Heidelberg

    Google Scholar 

  • Garding J, Porrill J, Mayhew JE, Frisby JP (1995) Stereopsis, vertical disparity and relief transformations. Vision Res 35(5):703–722

    Article  PubMed  CAS  Google Scholar 

  • Haefner RM, Cumming BG (2008) Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model. Neuron 57(1):147–158

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayashi R, Maeda T, Shimojo S, Tachi S (2004) An integrative model of binocular vision: a stereo model utilizing interocularly unpaired points produces both depth and binocular rivalry. Vision Res 44(20):2367–2380

    Article  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106

    PubMed Central  PubMed  CAS  Google Scholar 

  • Janssen P, Vogels R, Liu Y, Orban GA (2003) At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron 37(4):693–701

    Article  PubMed  CAS  Google Scholar 

  • Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

    Google Scholar 

  • Lehky SR, Sejnowski TJ (1990) Neural model of stereoacuity and depth interpolation based on a distributed representation of stereo disparity [published erratum appears in J Neurosci 1991;11(3): following Table of Contents]. J Neurosci 10(7): 2281–2299

    Google Scholar 

  • Lippert J, Wagner H (2001) A threshold explains modulation of neural responses to opposite-contrast stereograms. Neuroreport 12(15):3205–3208

    Article  PubMed  CAS  Google Scholar 

  • Longuet-Higgins HC (1982) The role of the vertical dimension in stereoscopic vision. Perception 11(4):377–386

    Article  PubMed  CAS  Google Scholar 

  • Marr D, Poggio T (1979) A computational theory of human stereo vision. Proc R Soc Lond B Biol Sci 204(1156):301–328

    Article  PubMed  CAS  Google Scholar 

  • Matthews N, Meng X, Xu P, Qian N (2003) A physiological theory of depth perception from vertical disparity. Vision Res 43(1):85–99

    Article  PubMed  Google Scholar 

  • McKee SP, Verghese P (2002) Stereo transparency and the disparity gradient limit. Vision Res 42(16):1963–1977

    Article  PubMed  Google Scholar 

  • Morgan MJ (1976) Pulfrich effect and the filling in of apparent motion. Perception 5(2):187–195

    Article  PubMed  CAS  Google Scholar 

  • Movshon J, Thompson I, Tolhurst DJ (1978a) Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol 283:53–77

    PubMed Central  PubMed  CAS  Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978b) Receptive field organization of complex cells in the cat’s striate cortex. J Physiol 283:79–99

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nienborg H, Bridge H, Parker AJ, Cumming BG (2004) Receptive field size in V1 neurons limits acuity for perceiving disparity modulation. J Neurosci 24(9):2065–2076

    Article  PubMed  CAS  Google Scholar 

  • Nienborg H, Bridge H, Parker AJ, Cumming BG (2005) Neuronal computation of disparity in V1 limits temporal resolution for detecting disparity modulation. J Neurosci 25(44):10207–10219

    Article  PubMed  CAS  Google Scholar 

  • Norcia AM, Tyler CW (1984) Temporal frequency limits for stereoscopic apparent motion processes. Vision Res 24(5):395–401

    Article  PubMed  CAS  Google Scholar 

  • Ohzawa I (1998) Mechanisms of stereoscopic vision: the disparity energy model. Curr Opin Neurobiol 8(4):509–515

    Article  PubMed  CAS  Google Scholar 

  • Ohzawa I, DeAngelis GC, Freeman RD (1990) Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249:1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Parker AJ (2007) Binocular depth perception and the cerebral cortex. Nat Rev Neurosci 8(5):379–391

    Article  PubMed  CAS  Google Scholar 

  • Poggio GF, Motter BC, Squatrito S, Trotter Y (1985) Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms. Vision Res 25(3):397–406

    Article  PubMed  CAS  Google Scholar 

  • Pollard SB, Mayhew JE, Frisby JP (1985) PMF: a stereo correspondence algorithm using a disparity gradient limit. Perception 14(4):449–470

    Article  PubMed  CAS  Google Scholar 

  • Prince SJ, Cumming BG, Parker AJ (2002) Range and mechanism of encoding of horizontal disparity in macaque V1. J Neurophysiol 87(1):209–221

    PubMed  CAS  Google Scholar 

  • Qian N (1994) Computing stereo disparity and motion with known binocular cell properties. Neural Comput 6:390–404

    Article  Google Scholar 

  • Qian N (1997) Binocular disparity and the perception of depth. Neuron 18(3):359–368

    Article  PubMed  CAS  Google Scholar 

  • Qian N, Andersen RA (1997) A physiological model for motion-stereo integration and a unified explanation of Pulfrich-like phenomena. Vision Res 37(12):1683–1698

    Article  PubMed  CAS  Google Scholar 

  • Qian N, Mikaelian S (2000) Relationship between phase and energy methods for disparity computation. Neural Comput 12(2):279–292

    Article  PubMed  CAS  Google Scholar 

  • Qian N, Zhu Y (1997) Physiological computation of binocular disparity. Vision Res 37(13):1811–1827

    Article  PubMed  CAS  Google Scholar 

  • Read JCA (2005) Early computational processing in binocular vision and depth perception. Prog Biophys Mol Biol 87:77–108

    Article  PubMed Central  PubMed  Google Scholar 

  • Read JCA (2010) Vertical binocular disparity is encoded implicitly within a model neuronal population tuned to horizontal disparity and orientation. PLoS Comput Biol 6(4):e1000754

    Article  PubMed Central  PubMed  Google Scholar 

  • Read JCA, Cumming BG (2003) Testing quantitative models of binocular disparity selectivity in primary visual cortex. J Neurophysiol 90(5):2795–2817

    Article  PubMed Central  PubMed  Google Scholar 

  • Read JCA, Cumming BG (2004) Understanding the cortical specialization for horizontal disparity. Neural Comput 16:1983–2020

    Article  PubMed Central  PubMed  Google Scholar 

  • Read JCA, Cumming BG (2005) The effect of interocular delay on disparity selective V1 neurons: relationship to stereoacuity and the Pulfrich effect. J Neurophysiol 94:1541–1553

    Article  PubMed Central  PubMed  Google Scholar 

  • Read JCA, Cumming BG (2006) Does visual perception require vertical disparity detectors? J Vis 6(12):1323–1355

    Article  PubMed  Google Scholar 

  • Read JCA, Cumming BG (2007) Sensors for impossible stimuli may solve the stereo correspondence problem. Nat Neurosci 10(10):1322–1328

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Read JCA, Eagle RA (2000) Reversed stereo depth and motion direction with anti-correlated stimuli. Vision Res 40(24):3345–3358

    Article  PubMed  CAS  Google Scholar 

  • Read JCA, Parker AJ, Cumming BG (2002) A simple model accounts for the reduced response of disparity-tuned V1 neurons to anti-correlated images. Vis Neurosci 19:735–753

    Article  PubMed  Google Scholar 

  • Read JCA, Phillipson GP, Glennerster A (2009) Latitude and longitude vertical disparities. J Vis 9(13):11.1–37

    Article  Google Scholar 

  • Rogers BJ, Bradshaw MF (1993) Vertical disparities, differential perspective and binocular stereopsis. Nature 361(6409):253–255

    Article  PubMed  CAS  Google Scholar 

  • Rogers BJ, Bradshaw MF (1995) Disparity scaling and the perception of frontoparallel surfaces. Perception 24(2):155–179

    Article  PubMed  CAS  Google Scholar 

  • Samonds JM, Potetz BR, Tyler CW, Lee TS (2013) Recurrent connectivity can account for the dynamics of disparity processing in v1. J Neurosci 33(7):2934–2946

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sanger T (1988) Stereo disparity computation using Gabor filters. Biol Cybern 59:405–418

    Article  Google Scholar 

  • Sasaki KS, Tabuchi Y, Ohzawa I (2010) Complex cells in the cat striate cortex have multiple disparity detectors in the three-dimensional binocular receptive fields. J Neurosci 30(41):13826–13837

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Ohzawa I (2006) Neural basis for stereopsis from second-order contrast cues. J Neurosci 26(16):4370–4382

    Article  PubMed  CAS  Google Scholar 

  • Thomas OM, Cumming BG, Parker AJ (2002) A specialization for relative disparity in V2. Nat Neurosci 5(5):472–478

    Article  PubMed  CAS  Google Scholar 

  • Tsai JJ, Victor JD (2003) Reading a population code: a multi-scale neural model for representing binocular disparity. Vision Res 43(4):445–466

    Article  PubMed  Google Scholar 

  • Tsirlin I, Allison RS, Wilcox LM (2012) Perceptual asymmetry reveals neural substrates underlying stereoscopic transparency. Vision Res 54:1–11

    Article  PubMed  Google Scholar 

  • Tyler CW (1974) Depth perception in disparity gratings. Nature 251(5471):140–142

    Article  PubMed  CAS  Google Scholar 

  • Tyler CW (1975) Spatial organization of binocular disparity sensitivity. Vision Res 15(5):583–590

    Article  PubMed  CAS  Google Scholar 

  • Tyler CW (1978) Binocular cross-correlation in time and space. Vision Res 18(1):101–105

    Article  PubMed  CAS  Google Scholar 

  • von der Heydt R, Zhou H, Friedman HS (2000) Representation of stereoscopic edges in monkey visual cortex. Vision Res 40(15):1955–1967

    Article  PubMed  Google Scholar 

  • Watanabe O, Fukushima K (1999) Stereo algorithm that extracts a depth cue from interocularly unpaired points. Neural Netw 12(4–5):569–578

    Article  PubMed  Google Scholar 

  • Westheimer G (1979) Cooperative neural processes involved in stereoscopic acuity. Exp Brain Res 36(3):585–597

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Read .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Read, J. (2014). Stereo Vision, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_560-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_560-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics