Skip to main content

Neural Decoding

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AP:

Action Potential

CLDA:

Closed-Loop Decoder Adaptation

HMM:

Hidden Markov Models

LDA:

Linear Discriminant Analysis

LFP:

Local Field Potential

ML:

Maximum Likelihood

MAP:

Maximum a Posteriori

MUA:

Multi-Unit Activity

NMP:

Neuromotor Prosthesis

OLE:

Optimal Linear Estimator

PVA:

Population Vector Algorithm

SUA:

Single-Unit Activity

SVM:

Support Vector Machines

References

  • Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain–machine interface. Curr Opin Neurobiol 14(6):720–726

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Hwang EJ, Mulliken GH (2010) Cognitive neural prosthetics. Annu Rev Psychol 61(1):169–190

    Article  PubMed Central  PubMed  Google Scholar 

  • Badreldin I, Southerland J, Vaidya M, Eleryan A, Balasubramanian K, Fagg A, Hatsopoulos N, Oweiss K (2013) Unsupervised decoder initialization for brain-machine interfaces using neural state space dynamics. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER) New York, NY, USA, pp 997–1000

    Google Scholar 

  • Becedas J (2012) Brain-machine interfaces: basis and advances. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):825–836

    Article  Google Scholar 

  • Berger T, Ahuja A, Courellis S, Deadwyler S, Erinjippurath G, Gerhardt G, Gholmieh G, Granacki J, Hampson R, Hsaio MC, Lacoss J, Marmarelis V, Nasiatka P, Srinivasan V, Song D, Tanguay A, Wills J (2005) Restoring lost cognitive function. IEEE Eng Med Biol Mag 24(5):30–44

    Article  PubMed  Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning, vol 1. Springer, New York

    Google Scholar 

  • Brockmeier AJ, Príncipe J (2013) Decoding algorithms for brain-machine interfaces. English. In: He B (ed) Neural engineering. Springer, New York, pp 223–257

    Chapter  Google Scholar 

  • Brockwell AE, Rojas AL, Kass RE (2004) Recursive Bayesian decoding of motor cortical signals by particle filtering. J Neurophysiol 91(4):1899–1907

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451. Visited on 03/07/2014

    Article  PubMed  Google Scholar 

  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420

    Article  PubMed  Google Scholar 

  • Carmena JM (2013) Advances in neuroprosthetic learning and control. PLoS Biol 11(5):e1001561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2(7):664–670

    Article  CAS  PubMed  Google Scholar 

  • Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564

    Article  PubMed Central  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2005) Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press, Cambridge, MA

    Google Scholar 

  • Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163(3870):955–958

    Article  CAS  PubMed  Google Scholar 

  • Fetz EE (2007) Volitional control of neural activity: implications for brain-computer interfaces. J Physiol 579(3):571–579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flint RD, Lindberg EW, Jordan LR, Miller LE, Slutzky MW (2012) Accurate decoding of reaching movements from field potentials in the absence of spikes. J Neural Eng 9(4):046006

    Article  PubMed Central  PubMed  Google Scholar 

  • Flint RD, Wright ZA, Scheid MR, Slutzky MW (2013) Long term, stable brain machine interface performance using local field potentials and multiunit spikes. J Neural Eng 10(5):056005

    Article  PubMed  Google Scholar 

  • Gage GJ, Ludwig KA, Otto KJ, Ionides EL, Kipke DR (2005) Naïve coadaptive cortical control. J Neural Eng 2(2):52

    Article  PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three- dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci 8(8):2928–2937

    CAS  PubMed  Google Scholar 

  • Gilja V, Chestek C, Diester I, Henderson J, Deisseroth K, Shenoy K (2011) Challenges and opportunities for next-generation intracortically based neural prostheses. IEEE Trans Biomed Eng 58(7):1891–1899

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM, MM C- l, Kaufman MT, Kao JC, Ryu SI, Shenoy KV (2012) A high- performance neural prosthesis enabled by control algorithm design. Nat Neurosci 15(12):1752–1757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gürel T, Mehring C (2012) Unsupervised adaptation of brain-machine interface decoders. Front Neurosci 6:164. doi: 10.3389/fnins.2012.00164. eCollection 2012.

    Google Scholar 

  • Hatsopoulos NG, Donoghue JP (2009) The science of neural interface systems. Annu Rev Neurosci 32(1):249–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171

    Article  CAS  PubMed  Google Scholar 

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Homer ML, Nurmikko AV, Donoghue JP, Hochberg LR (2013) Sensors and decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng 15(1):383–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsiao M-C, Song D, Berger TW (2013) Nonlinear dynamical model based control of in vitro hippocampal output. Front Neural Circuits 7

    Google Scholar 

  • Kemere C, Santhanam G, Yu BM, Afshar A, Ryu SI, Meng TH, Shenoy KV (2008) Detecting neural-state transitions using hidden Markov models for motor cortical prostheses. J Neurophysiol 100(4):2441–2452

    Article  PubMed Central  PubMed  Google Scholar 

  • Koralek AC, Jin X, Long Ii JD, Costa RM, Carmena JM (2012) Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483(7389):331–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, Kass RE (2010) Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control. J Comput Neurosci 29(1):73–87

    Article  PubMed  Google Scholar 

  • Lee B, Liu CY, Apuzzo MLJ (2013) A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration. World Neurosurg 79(3):457–471

    Article  PubMed  Google Scholar 

  • Li Z, O’Doherty JE, Lebedev MA, Nicolelis MAL (2011) Adaptive decoding for brain-machine interfaces through Bayesian parameter updates. Neural Comput 23(12):3162–3204

    Article  PubMed Central  PubMed  Google Scholar 

  • Marquardt DW (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12(3):591–612

    Article  Google Scholar 

  • McFarland DJ, Wolpaw JR (2011) Brain-computer interfaces for communication and control. Commun ACM 54(5):60–66. Visited on 02/14/2014

    Article  PubMed Central  PubMed  Google Scholar 

  • Micera S, Carpaneto J, Raspopovic S (2010) Control of hand prostheses using peripheral information. Biomed Eng IEEE Rev 3:48–68

    Article  Google Scholar 

  • Millán JDR, Carmena J (2010) Invasive or noninvasive: understanding brain-machine interface technology [conversations in BME]. IEEE Eng Med Biol Mag 29(1):16–22

    Article  Google Scholar 

  • Moran D, Schwartz A (1999) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82(5):2676–2692. Visited on 03/07/2014

    CAS  PubMed  Google Scholar 

  • Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456(7222):639–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicolelis MAL (2001) Actions from thoughts. Nature 409(6818):403–407

    Article  CAS  PubMed  Google Scholar 

  • Orsborn AL, Carmena JM (2013) Creating new functional circuits for action via brain-machine interfaces. Front Comput Neurosci 7:157

    Article  PubMed Central  PubMed  Google Scholar 

  • Orsborn A, Dangi S, Moorman H, Carmena J (2012) Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions. IEEE Trans Neural Syst Rehabil Eng 20(4):468–477

    Article  PubMed  Google Scholar 

  • Paiva AR, Park I, Príncipe JC (2010) Chapter 8: Inner products for representation and learning in the spike train domain. In: Oweiss KG (ed) Statistical signal processing for neuroscience and neurotechnology, 1st edn. Academic, Oxford, pp 265–309

    Chapter  Google Scholar 

  • Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91(1):515–532

    Article  PubMed  Google Scholar 

  • Pohlmeyer EA, Mahmoudi B, Geng S, Prins NW, Sanchez JC (2014) Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization. PLoS One 9(1):e87253

    Article  PubMed Central  PubMed  Google Scholar 

  • Quian QR, Panzeri S (2009) Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 10(3):173–185

    Article  Google Scholar 

  • Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. J Comput Neurosci 1(1):89–107

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27(1):487–507

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8:2913–2927

    Google Scholar 

  • Schwartz AB, Taylor DM, Tillery SIH (2001) Extraction algorithms for cortical control of arm prosthetics. Curr Opin Neurobiol 11(6):701–708

    Article  CAS  PubMed  Google Scholar 

  • Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Brain-machine interface: instant neural control of a movement signal. Nature 416(6877):141–142

    Article  CAS  PubMed  Google Scholar 

  • Shanechi MM, Hu RC, Powers M, Wornell GW, Brown EN, Williams ZM (2012) Neural population partitioning and a concurrent brain-machine interface for sequential motor function. Nat Neurosci 15(12):1715–1722

    Article  CAS  PubMed  Google Scholar 

  • Song D, Berger TW (2010) Chapter 4: Identification of nonlinear dynamics in neural population activity. In: Oweiss KG (ed) Statistical signal processing for neuroscience and neurotechnology, 1st edn. Academic, Oxford, pp 103–128

    Chapter  Google Scholar 

  • Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain-machine interface control. J Neurosci 30(50):16777–16787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor DM, Tillery SIH, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832

    Article  CAS  PubMed  Google Scholar 

  • Thakor NV (2013) Translating the brain-machine interface. Sci Transl Med 5(210):210 ps17

    Article  Google Scholar 

  • Wallisch P, Lusignan ME, Benayoun MD, Baker TI, Dickey AS, Hatsopoulos NG (2008) MATLAB for neuroscientists: an introduction to scientific computing in MATLAB. Academic, Amsterdam

    Google Scholar 

  • Warland DK, Reinagel P, Meister M (1997) Decoding visual information from a population of retinal ganglion cells. J Neurophysiol 78(5):2336–2350

    CAS  PubMed  Google Scholar 

  • Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MAL (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810):361–365

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ (2006) Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput 18(1):80–118

    Article  PubMed  Google Scholar 

  • Yu BM, Santhanam G, Sahani M, Shenoy KV (2010) Chapter 7: Neural decoding for motor and communication prostheses. In: Oweiss KG (ed) Statistical signal processing for neuroscience and neurotechnology, 1st edn. Academic, Oxford, pp 219–263

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islam S. Badreldin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Badreldin, I.S., Oweiss, K.G. (2014). Neural Decoding. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_559-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_559-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics