Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Neural Decoding

  • Islam S. Badreldin
  • Karim G. Oweiss
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_559-1


Neural decoding refers to the process of transforming measured neural activity from its original, usually high-dimensional, domain of representation to a new domain that is typically of much lower dimension.

Detailed Description


In information theory, “decoding” means reversing an “encoding” process that was used to encrypt a set of information-bearing signals in a new domain, usually of lower dimension, where the information is fully preserved. In neuroscience, “encoding” is concerned with the neural representation of behavioral covariates (e.g., sensory inputs, motor outputs, or other cognitive processes). As such, neural decoding is concerned with the process of off-line extraction of information about these behavioral covariates from the measured neural activity (Dayan and Abbott 2005; Wallisch et al. 2008).

The definition of neural decoding, however, has evolved since the introduction of neuromotor prosthesis (NMP) in which neural activity is measured and...


Firing Rate Kalman Filter Linear Discriminant Analysis Spike Train Local Field Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain–machine interface. Curr Opin Neurobiol 14(6):720–726PubMedCrossRefGoogle Scholar
  2. Andersen RA, Hwang EJ, Mulliken GH (2010) Cognitive neural prosthetics. Annu Rev Psychol 61(1):169–190PubMedCentralPubMedCrossRefGoogle Scholar
  3. Badreldin I, Southerland J, Vaidya M, Eleryan A, Balasubramanian K, Fagg A, Hatsopoulos N, Oweiss K (2013) Unsupervised decoder initialization for brain-machine interfaces using neural state space dynamics. In: 2013 6th international IEEE/EMBS conference on neural engineering (NER) New York, NY, USA, pp 997–1000Google Scholar
  4. Becedas J (2012) Brain-machine interfaces: basis and advances. IEEE Trans Syst Man Cybern Part C Appl Rev 42(6):825–836CrossRefGoogle Scholar
  5. Berger T, Ahuja A, Courellis S, Deadwyler S, Erinjippurath G, Gerhardt G, Gholmieh G, Granacki J, Hampson R, Hsaio MC, Lacoss J, Marmarelis V, Nasiatka P, Srinivasan V, Song D, Tanguay A, Wills J (2005) Restoring lost cognitive function. IEEE Eng Med Biol Mag 24(5):30–44PubMedCrossRefGoogle Scholar
  6. Bishop CM (2006) Pattern recognition and machine learning, vol 1. Springer, New YorkGoogle Scholar
  7. Brockmeier AJ, Príncipe J (2013) Decoding algorithms for brain-machine interfaces. English. In: He B (ed) Neural engineering. Springer, New York, pp 223–257CrossRefGoogle Scholar
  8. Brockwell AE, Rojas AL, Kass RE (2004) Recursive Bayesian decoding of motor cortical signals by particle filtering. J Neurophysiol 91(4):1899–1907PubMedCrossRefGoogle Scholar
  9. Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446–451. Visited on 03/07/2014PubMedCrossRefGoogle Scholar
  10. Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420PubMedCrossRefGoogle Scholar
  11. Carmena JM (2013) Advances in neuroprosthetic learning and control. PLoS Biol 11(5):e1001561PubMedCentralPubMedCrossRefGoogle Scholar
  12. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2(7):664–670PubMedCrossRefGoogle Scholar
  13. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564PubMedCentralPubMedCrossRefGoogle Scholar
  14. Dayan P, Abbott LF (2005) Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press, Cambridge, MAGoogle Scholar
  15. Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163(3870):955–958PubMedCrossRefGoogle Scholar
  16. Fetz EE (2007) Volitional control of neural activity: implications for brain-computer interfaces. J Physiol 579(3):571–579PubMedCentralPubMedCrossRefGoogle Scholar
  17. Flint RD, Lindberg EW, Jordan LR, Miller LE, Slutzky MW (2012) Accurate decoding of reaching movements from field potentials in the absence of spikes. J Neural Eng 9(4):046006PubMedCentralPubMedCrossRefGoogle Scholar
  18. Flint RD, Wright ZA, Scheid MR, Slutzky MW (2013) Long term, stable brain machine interface performance using local field potentials and multiunit spikes. J Neural Eng 10(5):056005PubMedCrossRefGoogle Scholar
  19. Gage GJ, Ludwig KA, Otto KJ, Ionides EL, Kipke DR (2005) Naïve coadaptive cortical control. J Neural Eng 2(2):52PubMedCrossRefGoogle Scholar
  20. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419PubMedCrossRefGoogle Scholar
  21. Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three- dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci 8(8):2928–2937PubMedGoogle Scholar
  22. Gilja V, Chestek C, Diester I, Henderson J, Deisseroth K, Shenoy K (2011) Challenges and opportunities for next-generation intracortically based neural prostheses. IEEE Trans Biomed Eng 58(7):1891–1899PubMedCentralPubMedCrossRefGoogle Scholar
  23. Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM, MM C- l, Kaufman MT, Kao JC, Ryu SI, Shenoy KV (2012) A high- performance neural prosthesis enabled by control algorithm design. Nat Neurosci 15(12):1752–1757PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gürel T, Mehring C (2012) Unsupervised adaptation of brain-machine interface decoders. Front Neurosci 6:164. doi: 10.3389/fnins.2012.00164. eCollection 2012.Google Scholar
  25. Hatsopoulos NG, Donoghue JP (2009) The science of neural interface systems. Annu Rev Neurosci 32(1):249–266PubMedCentralPubMedCrossRefGoogle Scholar
  26. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171PubMedCrossRefGoogle Scholar
  27. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375PubMedCentralPubMedCrossRefGoogle Scholar
  28. Homer ML, Nurmikko AV, Donoghue JP, Hochberg LR (2013) Sensors and decoding for intracortical brain computer interfaces. Annu Rev Biomed Eng 15(1):383–405PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hsiao M-C, Song D, Berger TW (2013) Nonlinear dynamical model based control of in vitro hippocampal output. Front Neural Circuits 7Google Scholar
  30. Kemere C, Santhanam G, Yu BM, Afshar A, Ryu SI, Meng TH, Shenoy KV (2008) Detecting neural-state transitions using hidden Markov models for motor cortical prostheses. J Neurophysiol 100(4):2441–2452PubMedCentralPubMedCrossRefGoogle Scholar
  31. Koralek AC, Jin X, Long Ii JD, Costa RM, Carmena JM (2012) Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483(7389):331–335PubMedCentralPubMedCrossRefGoogle Scholar
  32. Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, Kass RE (2010) Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control. J Comput Neurosci 29(1):73–87PubMedCrossRefGoogle Scholar
  33. Lee B, Liu CY, Apuzzo MLJ (2013) A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration. World Neurosurg 79(3):457–471PubMedCrossRefGoogle Scholar
  34. Li Z, O’Doherty JE, Lebedev MA, Nicolelis MAL (2011) Adaptive decoding for brain-machine interfaces through Bayesian parameter updates. Neural Comput 23(12):3162–3204PubMedCentralPubMedCrossRefGoogle Scholar
  35. Marquardt DW (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12(3):591–612CrossRefGoogle Scholar
  36. McFarland DJ, Wolpaw JR (2011) Brain-computer interfaces for communication and control. Commun ACM 54(5):60–66. Visited on 02/14/2014PubMedCentralPubMedCrossRefGoogle Scholar
  37. Micera S, Carpaneto J, Raspopovic S (2010) Control of hand prostheses using peripheral information. Biomed Eng IEEE Rev 3:48–68CrossRefGoogle Scholar
  38. Millán JDR, Carmena J (2010) Invasive or noninvasive: understanding brain-machine interface technology [conversations in BME]. IEEE Eng Med Biol Mag 29(1):16–22CrossRefGoogle Scholar
  39. Moran D, Schwartz A (1999) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82(5):2676–2692. Visited on 03/07/2014PubMedGoogle Scholar
  40. Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456(7222):639–642PubMedCentralPubMedCrossRefGoogle Scholar
  41. Nicolelis MAL (2001) Actions from thoughts. Nature 409(6818):403–407PubMedCrossRefGoogle Scholar
  42. Orsborn AL, Carmena JM (2013) Creating new functional circuits for action via brain-machine interfaces. Front Comput Neurosci 7:157PubMedCentralPubMedCrossRefGoogle Scholar
  43. Orsborn A, Dangi S, Moorman H, Carmena J (2012) Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions. IEEE Trans Neural Syst Rehabil Eng 20(4):468–477PubMedCrossRefGoogle Scholar
  44. Paiva AR, Park I, Príncipe JC (2010) Chapter 8: Inner products for representation and learning in the spike train domain. In: Oweiss KG (ed) Statistical signal processing for neuroscience and neurotechnology, 1st edn. Academic, Oxford, pp 265–309CrossRefGoogle Scholar
  45. Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91(1):515–532PubMedCrossRefGoogle Scholar
  46. Pohlmeyer EA, Mahmoudi B, Geng S, Prins NW, Sanchez JC (2014) Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization. PLoS One 9(1):e87253PubMedCentralPubMedCrossRefGoogle Scholar
  47. Quian QR, Panzeri S (2009) Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 10(3):173–185CrossRefGoogle Scholar
  48. Salinas E, Abbott LF (1994) Vector reconstruction from firing rates. J Comput Neurosci 1(1):89–107PubMedCrossRefGoogle Scholar
  49. Schwartz AB (2004) Cortical neural prosthetics. Annu Rev Neurosci 27(1):487–507PubMedCrossRefGoogle Scholar
  50. Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8:2913–2927Google Scholar
  51. Schwartz AB, Taylor DM, Tillery SIH (2001) Extraction algorithms for cortical control of arm prosthetics. Curr Opin Neurobiol 11(6):701–708PubMedCrossRefGoogle Scholar
  52. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Brain-machine interface: instant neural control of a movement signal. Nature 416(6877):141–142PubMedCrossRefGoogle Scholar
  53. Shanechi MM, Hu RC, Powers M, Wornell GW, Brown EN, Williams ZM (2012) Neural population partitioning and a concurrent brain-machine interface for sequential motor function. Nat Neurosci 15(12):1715–1722PubMedCrossRefGoogle Scholar
  54. Song D, Berger TW (2010) Chapter 4: Identification of nonlinear dynamics in neural population activity. In: Oweiss KG (ed) Statistical signal processing for neuroscience and neurotechnology, 1st edn. Academic, Oxford, pp 103–128CrossRefGoogle Scholar
  55. Suminski AJ, Tkach DC, Fagg AH, Hatsopoulos NG (2010) Incorporating feedback from multiple sensory modalities enhances brain-machine interface control. J Neurosci 30(50):16777–16787PubMedCentralPubMedCrossRefGoogle Scholar
  56. Taylor DM, Tillery SIH, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832PubMedCrossRefGoogle Scholar
  57. Thakor NV (2013) Translating the brain-machine interface. Sci Transl Med 5(210):210 ps17CrossRefGoogle Scholar
  58. Wallisch P, Lusignan ME, Benayoun MD, Baker TI, Dickey AS, Hatsopoulos NG (2008) MATLAB for neuroscientists: an introduction to scientific computing in MATLAB. Academic, AmsterdamGoogle Scholar
  59. Warland DK, Reinagel P, Meister M (1997) Decoding visual information from a population of retinal ganglion cells. J Neurophysiol 78(5):2336–2350PubMedGoogle Scholar
  60. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ, Srinivasan MA, Nicolelis MAL (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408(6810):361–365PubMedCrossRefGoogle Scholar
  61. Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ (2006) Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput 18(1):80–118PubMedCrossRefGoogle Scholar
  62. Yu BM, Santhanam G, Sahani M, Shenoy KV (2010) Chapter 7: Neural decoding for motor and communication prostheses. In: Oweiss KG (ed) Statistical signal processing for neuroscience and neurotechnology, 1st edn. Academic, Oxford, pp 219–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Electrical and Computer Engineering, Neuroscience and Cognitive ScienceMichigan State UniversityEast LansingUSA