Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Radiopharmaceuticals in Molecular Imaging

  • Shankar VallabhajosulaEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_537-1



Molecular imaging (MI) is a biomedical research discipline enabling the visualization, characterization, and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects including patients. MI typically includes two- or three-dimensional imaging as well as quantification over time. The MI techniques may include radiotracer imaging/nuclear medicine (such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), optical imaging, ultrasound, and others.

Radiopharmaceuticals are drug molecules (containing radioactive atoms or radioisotopes) useful for noninvasive imaging studies or radionuclide therapy.

Nuclear medicine (PET and SPECT) uses...


Positron Emission Tomography Molecular Imaging Positron Emission Tomography Tracer Alkali Metal Halide TSPO Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Antoni G, Långström B (2005) Progress in 11C radiochemistry. In: Bailey DL, Townsend DW, Valk PE, Maisey MN (eds) Positron emission tomography: basic sciences. Springer, London, pp 223–236CrossRefGoogle Scholar
  2. Brooks DJ (2010) Imaging approaches to Parkinson disease. J Nucl Med 51:596–609PubMedCrossRefGoogle Scholar
  3. Cagnin A, Kassiou M, Meikle SR, Banati RB (2007) Positron emission tomography imaging of neuroinflammation. Neurotherapeutics 4:443–452PubMedCrossRefGoogle Scholar
  4. Ching ASC, Kuhnast B, Damont A (2012) Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insight Imaging 3:111–119CrossRefGoogle Scholar
  5. Dollé F (2013) Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography. J Label Compd Radiopharm 56:65–67CrossRefGoogle Scholar
  6. Eersels JLH, Travis MJ, Herscheid JDM (2005) Manufacturing I-123-labelled radiopharmaceuticals: pitfalls and solutions. J Label Compd Radiopharm 48:241–257CrossRefGoogle Scholar
  7. Fowler JS, Ding Y-S, Volkow ND (2003) Radiotracers for positron emission tomography imaging. Semin Nucl Med 33:14–27PubMedCrossRefGoogle Scholar
  8. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934PubMedCentralPubMedCrossRefGoogle Scholar
  9. Goedert M, Klug A, Crowther RA (2006) Tau protein, the paired helical filament and Alzheimer’s disease. J Alzheimers Dis 9:195–207PubMedGoogle Scholar
  10. Heiss WD, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312PubMedGoogle Scholar
  11. Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18S1:S210–S212CrossRefGoogle Scholar
  12. Kabalka GW, Mereddy AR (2004) A facile no-carrier-added radioiodination procedure suitable for radiolabeling kits. Nucl Med Biol 31:935–938PubMedCrossRefGoogle Scholar
  13. Långström B, Karimi F, Watanabe Y (2013) Endogenous compounds labeled with radionuclides of short half-life – some perspectives. J Label Compd Radiopharm 2013(56):251–262CrossRefGoogle Scholar
  14. Li Z, Conti PS (2010) Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliv Rev 62:1031–1051PubMedCrossRefGoogle Scholar
  15. Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48:18N and 21NGoogle Scholar
  16. Någren K, Halldin C, Rinne JO (2010) Radiopharmaceuticals for positron emission tomography investigations of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 37:1575–1593PubMedCrossRefGoogle Scholar
  17. Park BK, Kitteringham NR, O’Neill PM (2001) Metabolism of fluorine-containing drugs. Annu Rev Pharmacol Toxicol 41:443–470PubMedCrossRefGoogle Scholar
  18. Ruth TJ (2003) Accelerators available for isotope production. In: Welch MJ, Redvanley CS (eds) Handbook of radiopharmaceuticals, radiochemistry and applications. Weily, New York, pp 71–86Google Scholar
  19. Schlyer DJ (2003) Production of radionuclides in accelerators. In: Welch MJ, REdvanley CS (eds) Handbook of radiopharmaceuticals, radiochemistry and applications. Weily, New York, pp 1–70Google Scholar
  20. Vallabhajosula S (2009) Radiopharmaceuticals for PET and SPECT. Springer, BerlinGoogle Scholar
  21. Vallabhajosula S (2011) Positron emission tomography radiopharmaceuticals for imaging brain beta-amyloid. Semin Nucl Med 41:283–299PubMedCrossRefGoogle Scholar
  22. Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2010) Coordinating radiometals of copper, gallium, indium, yttrium and zirconium for PET and SPECT imaging of disease. Chem Rev 100(5):2858–2902CrossRefGoogle Scholar
  23. Wagner HN Jr, Burns HD, Dannals RF et al (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221(4617):1264–1266PubMedCrossRefGoogle Scholar
  24. Welch MJ, McCarthy TJ (2000) The potential role of generator-produced radiopharmaceuticals in clinical PET. J Nucl Med 41:315–317PubMedGoogle Scholar
  25. Zimmer L, Luxen A (2012) PET radiotracers for molecular imaging in the brain: past, present and future. Neuroimage 61:363–370PubMedCrossRefGoogle Scholar

Further Readings

  1. Contino M, Cantore M, Leopoldo M, Colabufo NA (2013) Biomarkers for the early diagnosis of Alzheimer’s disease: the challenge of XXI century. Adv Alzheimers Dis 2:13–30CrossRefGoogle Scholar
  2. Harada R, Okamura N, Furumoto S (2013) Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer’s disease pathology. Eur J Nucl Med Mol Imaging 40:125–132PubMedCrossRefGoogle Scholar
  3. Journal of Labelled Compounds and Radiopharmaceuticals, Special Issue: C-11 and F-18 chemistry devoted to molecular probes for imaging the brain with PET. http://onlinelibrary.wiley.com/doi/10.1002/jlcr.v56.3-4/issuetoc
  4. Kadir A, Nordberg A (2010) Target-specific PET probes for neurodegenerative disorders related to dementia. J Nucl Med 51:1418–1430PubMedCrossRefGoogle Scholar
  5. Kepe V, Bordelon Y, Boxer A (2013) PET Imaging of neuropathology in tauopathies: progressive supranuclear palsy. Alzheimers Dis 36:145–153Google Scholar
  6. Kikuchi T, Okamura T, Zhang M-R, Irie T (2013) PET probes for imaging brain acetylcholinesterase. J Label Compd Radiopharm 56:172–179CrossRefGoogle Scholar
  7. Kilbourn MR (2013) PET radioligands for the vesicular transporters for monoamines and acetylcholine. J Label Compd Radiopharm 56:167–171CrossRefGoogle Scholar
  8. Majo VJ, Prabhakaran J, Mann JJ, Kumar JSD (2013) PET and SPECT glutamate receptors. Drug Discov Today 18(3/4):173–184PubMedCrossRefGoogle Scholar
  9. Mathis CA, Mason NS, Lopresti BJ, Klunk WE (2012) Development of positron emission tomography β-Amyloid plaque imaging agents. Semin Nucl Med 42:423–432PubMedCentralPubMedCrossRefGoogle Scholar
  10. Moghbel MC, Saboury B, Basu S (2012) Amyloid-beta imaging with PET in Alzheimer’s disease: is it feasible with current radiotracers and technologies? Eur J Nucl Med Mol Imaging 39:202–208PubMedCrossRefGoogle Scholar
  11. Molecular Imaging and Contrast Agent Database (MICAD). http://www.ncbi.nlm.nih.gov/
  12. Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65:500–516PubMedCentralPubMedCrossRefGoogle Scholar
  13. Riss PJ, Stockhofe K, Roesch F (2013) Tropane-derived 11C-labelled and 18F-labelled DAT ligands. J Label Compd Radiopharm 56:149–158CrossRefGoogle Scholar
  14. Rowe CC, Villemagne VL (2013) Amyloid imaging with PET in early Alzheimer disease diagnosis. Med Clin N Am 97:377–398PubMedCrossRefGoogle Scholar
  15. Serdons K, Verbruggen A, Bormans GM (2009) Developing new molecular imaging probes for PET. Methods 48:104–111PubMedCrossRefGoogle Scholar
  16. Sobrio F (2013) Radiosynthesis of carbon-11 and fluorine-18 labelled radiotracers to image the ionotropic and metabotropic glutamate receptors. J Label Compd Radiopharm 56:180–186CrossRefGoogle Scholar
  17. Stehouwer JS, Goodman MM (2013) 11C and 18F PET radioligands for the serotonin transporter (SERT). J Label Compd Radiopharm 56:114–119CrossRefGoogle Scholar
  18. Vallabhajosula S, Solnes L, Vallabhajosula B (2011) A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med 41:246–264PubMedCrossRefGoogle Scholar
  19. Venneti S, Lopresti BJ, Wiley CA (2013) Molecular imaging of microglia/macrophages in the brain. GLIA 61:10–23PubMedCentralPubMedCrossRefGoogle Scholar
  20. Villemagne VL, Furumoto S, Fodero-Tavoletti M (2012) The challenges of tau imaging. Future Neurol 7:409–421CrossRefGoogle Scholar
  21. Wadsak W, Mitterhauser M (2010) Basics and principles of radiopharmaceuticals for PET/CT. Eur J Radiol 73:461–469PubMedCrossRefGoogle Scholar
  22. Winkeler A, Boisgard R, Martin A, Tavitian B (2010) Radioisotopic imaging of neuroinflammation. J Nucl Med 51:1–4PubMedCrossRefGoogle Scholar
  23. Xia C-F, Arteaga J, Chen G (2013) [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimer Dement 9(6):666–76Google Scholar
  24. Zimmer L, Bars DL (2013) Current status of positron emission tomography radiotracers for serotonin receptors in humans. J Label Compd Radiopharm 56:105–113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Citigroup Biomedical Imaging CenterWeill Cornell Medical CollegeNew YorkUSA