Skip to main content

Biophysical Models: Neurovascular Coupling, Cortical Microcircuits, and Metabolism

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 235 Accesses

Synonyms

Forward-generative models of functional neuroimaging data

Definition

Forward-generative models are considered crucial to interpret and integrate data obtained with different functional neuroimaging modalities (Riera 2014). Typically, these models are formulated to represent biological principles at the mesoscopic scale, which basically stand for an average voxel (1 mm3) in any brain imaging technique. To this end, biophysical models for neuronal activity, which are mostly available from the neuronal computationcommunity, have been modified to incorporate general physiological mechanisms governing glial cell activity, vascular dynamics, and metabolism. For the cerebral cortex, the most relevant brain structure in functional neuroimaging, a variety of such extended biophysical models has been consolidating around three main research topics over the last decade: (a) the principles for neurovascular coupling, (b) the organization of cortical microcircuits, and (c) the cellular...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Buxton RB, Frank LR (1997) A model of the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

    Article  CAS  PubMed  Google Scholar 

  • Daunizeau J, David O, Stephan KE (2011) Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage 58:312–322

    Article  CAS  PubMed  Google Scholar 

  • Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: From spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4(8): e1000092

    Google Scholar 

  • Deco G (2014) Multi-Scale brain connectivity. Encyclopedia of computational neuroscience, Springer

    Google Scholar 

  • DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol 39(6):563–607

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316

    Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302

    Article  CAS  PubMed  Google Scholar 

  • Gjedde A (1997) The relation between brain function and cerebral blood flow and metabolism. In: Batjer HH (ed) Cerebrovascular disease. Lippincott-Raven, Philadelphia, pp 23–40

    Google Scholar 

  • Gratiy SL, Pettersen KH, Einevoll GT, Dale AM (2013) Pitfalls in the interpretation of multielectrode data: on the infeasibility of the neuronal current-source monopoles. J Neurophysiol 109:1681–1682

    Article  PubMed Central  PubMed  Google Scholar 

  • Grieb P, Forster RE, Strome D, Goodwin CW, Pape PC (1985) O2 exchange between blood and brain tissues studied with 18O2 indicator-dilution technique. J Appl Physiol 58:1929–1941

    CAS  PubMed  Google Scholar 

  • Herman P, Trübel HK, Hyder F (2006) A multi-parametric assessment of oxygen efflux from the brain. J Cereb Blood Flow Metab 26:79–91

    Article  PubMed  Google Scholar 

  • Herman P, Sanganahalli BG, Blumenfeld H, Rothman DL, Hyder F (2013) Quantitative basis for neuroimaging of cortical laminae with calibrated fMRI. Proc Natl Acad Sci USA 110:15115–15120

    Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Stefanovic B, Silva AC (2011) Spatiotemporal evolution of the functional magnetic resonance imaging response to ultrashort stimuli. J Neurosci 31:1440–1447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyder F, Shulman RG, Rothman DL (1998) A model for the regulation of cerebral oxygen delivery. J Appl Physiol 85:554–564

    CAS  PubMed  Google Scholar 

  • Hyder F, Kennan RP, Kida I, Mason GF, Behar KL, Rothman DL (2000) Dependence of oxygen delivery on blood flow in rat brain: a 7 tesla nuclear magnetic resonance study. J Cereb Blood Flow Metab 20:485–498

    Article  CAS  PubMed  Google Scholar 

  • Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26:865–877

    Article  CAS  PubMed  Google Scholar 

  • Hyder F, Fulbright RK, Shulman RG, Rothman DL (2013a) Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy. J Cereb Blood Flow Metab 33:339–347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyder F, Rothman DL, Bennett MR (2013b) Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc Natl Acad Sci USA 110(9):3549–3554

    Google Scholar 

  • Kassissia IG, Goresky CA, Rose CP, Schwab AJ, Simard A, Huet PM, Bach GG (1995) Tracer oxygen distribution is barrier-limited in the cerebral microcirculation. Circ Res 77:1201–11

    Article  CAS  PubMed  Google Scholar 

  • Kloeden PE, Platen E (1999) Numerical solution of stochastic differential equations, 3rd edn. Springer, Berlin

    Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  • Maandag NJ, Coman D, Sanganahalli BG, Herman P, Smith AJ, Blumenfeld H, Shulman RG, Hyder F (2007) Energetics of neuronal signaling and fMRI activity. Proc Natl Acad Sci USA 104:20546–20551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  CAS  PubMed  Google Scholar 

  • Marreiros AC, Kiebel S, Daunizeau J, Harrison L, Friston KJ (2008) Population dynamics under the Laplace assumption. Neuroimage 44:701–714

    Article  PubMed  Google Scholar 

  • Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R (2005) Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309:951–954

    Article  CAS  PubMed  Google Scholar 

  • Ozaki T (2012) Time series modeling of neuroscience data. Chapman & Hall/CRC Interdisciplinary Statistics, London

    Book  Google Scholar 

  • Ozaki T (2014) Statistical analysis of neuroimaging data. Encyclopedia of computational neuroscience, Springer

    Google Scholar 

  • Pellerin L, Magistretti PJ (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • Riera J, Aubert E, Iwata K, Kawashima R, Wan X, Ozaki T (2005) Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses. Phil Trans R Soc B 360, 1025–1041

    Google Scholar 

  • Riera J, Sumiyoshi A (2010) Brain oscillations: ideal scenery to understand the neurovascular coupling. Curr Opin Neurol 23(4):374–381

    PubMed  Google Scholar 

  • Riera J (2014) Brain Imaging: Overview. Encyclopedia of Computational Neuroscience, Springer

    Google Scholar 

  • Riera J, Schousboe A, Waagepetersen HS, Howarth C, Hyder F (2008) The micro-architecture of the cerebral cortex: functional neuroimaging models and metabolism. Neuroimage 40:1436–1459

    Article  PubMed  Google Scholar 

  • Riera J, Ogawa T, Goto T, Sumiyoshi A, Nonaka H, Evans A, Miyakawa H, Kawashima R (2012) Pitfalls in the dipolar model for the neocortical EEG sources. J Neurophysiol 108(4):956–975

    Article  PubMed  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2001a) Lactate efflux and the neuroenergetic basis of brain function. NMR Biomed 14:389–396

    Article  CAS  PubMed  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2001b) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci U S A 98:6417–6422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F (2002) Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci U S A 99:10765–10770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Roebroeck A (2012) A short history of causal modeling of fMRI data. Neuroimage 62:856–863

    Article  PubMed  Google Scholar 

  • Stephan KE, Mattout J, David O, Friston KJ (2006) Models of functional neuroimaging data. Curr Med Imaging Rev 2(1):15–34

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics: current state and future extensions. J Biosci 32:129–144

    Article  PubMed Central  PubMed  Google Scholar 

  • Toga AW, Mazziotta JC (2002) Brain mapping: the methods, 2nd edn. Academic, San Diego

    Google Scholar 

  • Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: influence, causality and biophysical modeling. Neuroimage 58:339–361

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Riera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Riera, J. (2014). Biophysical Models: Neurovascular Coupling, Cortical Microcircuits, and Metabolism. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_522-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_522-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics