Skip to main content

Parkinson’s Disease: Deep Brain Stimulation

Encyclopedia of Computational Neuroscience
  • 170 Accesses

Synonyms

Chronic electrical stimulation; Deep brain stimulation; High-frequency stimulation; Idiopathic Parkinson's disease; Neuromodulation; Paralysis agitans; Shaking palsy

Definitions

Chronic electrical stimulation also called deep brain stimulation (DBS) of specific nuclei in the basal ganglia is currently used to treat patients with movement disorders related to Parkinson’s disease (PD). This entry reviews the clinical uses of, and mechanisms of, DBS to treat symptoms developed by patients with PD. The hope is that computational studies will lead to the development of better stimulation protocols which have better efficacy and involve DBS closed-loop stimulators external batteries.

Parkinson’s Disease

Parkinson’s disease (PD), the second most common neurodegenerative disease of the central nervous system after Alzheimer’s disease, affects more than six million people in the world and 1.2 million in Europe. This represents about 1 % of the global population over 50 years of age and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alberts WW (1972) A simple view of parkinsonian tremor. Electrical stimulation of cortex adjacent to the rolandic fissure in awake man. Brain Res 44:357–369

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  CAS  Google Scholar 

  • Aldini J (1803) An account of the late improvements in galvanism, with a series of curious and interesting experiments performed before the commissioners of the French national institute, and repeated lately in the anatomical theatres of London, to which is added an appendix containing experiments on the body of a malefactor executed at Newgate, and dissertations on animal electricity 1793 and 1794. Cuthell & Martin and J. Murray, London

    Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85:119–146

    Article  PubMed  CAS  Google Scholar 

  • Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, Kaplitt MG, Feigin A, Eidelberg D (2006) Network modulation in the treatment of Parkinson’s disease. Brain 129:2667–2678

    Article  PubMed  Google Scholar 

  • Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50:344–346

    PubMed  CAS  Google Scholar 

  • Benazzouz A, Boraud T, Feger J, Burbaud P, Bioulac B, Gross C (1996) Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with dopa treatment. Mov Disord 11:627–632

    Article  PubMed  CAS  Google Scholar 

  • Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356

    PubMed  CAS  Google Scholar 

  • Bikson M, Lian J, Hahn PJ, Stacey WC, Sciortino C, Durand DM (2001) Suppression of epileptiform activity by high-frequency sinusoidal fields in rat hippocampal slices. J Physiol 531:181–191

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Breit S, Schulz JB, Benabid AL (2004) Deep brain stimulation. Cell Tissue Res 318:275–288

    Article  PubMed  Google Scholar 

  • Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 18:357–363

    Article  PubMed  Google Scholar 

  • Brown P (2006) Bad oscillations in Parkinson’s disease. J Neural Transm Suppl 70:27–30

    Article  PubMed  Google Scholar 

  • Bucy PC, Buchanan DN (1932) Athetosis. Brain 55:179–192

    Article  Google Scholar 

  • Bucy PC, Case TJ (1939) Tremor: physiological mechanism and abolition by surgical means. Arch Neurol Psychiatry 41:721–746

    Article  Google Scholar 

  • Brown P, Eusebio A (2008) Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov Disord 23:12–20

    Article  PubMed  Google Scholar 

  • Calne D (2002) What triggers the “shaking palsy”? http://www.dana.org/news/cerebrum/detail.aspx?id=1726 (Dana Foundation)

  • Carlson JD, Cleary DR, Cetas JS, Heinricher MM, Burchiel KJ (2010) Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson’s patients. J Neurophysiol 103:962–967

    Article  PubMed  PubMed Central  Google Scholar 

  • Deniau JM, Degos B, Bosch C, Maurice N (2010) Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci 32:1080–1091

    Article  PubMed  Google Scholar 

  • Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17(Suppl 3):S63–S68

    Article  PubMed  Google Scholar 

  • Dostrovsky JO, Levy R, Wu JP, Hutchison WD, Tasker RR, Lozano AM (2000) Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J Neurophysiol 84:570–574

    PubMed  CAS  Google Scholar 

  • Eusebio A, Cagnan H, Brown P (2012) Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease? Front Integr Neurosci 6(47):1–9

    Google Scholar 

  • Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C (2003) Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci 23(25):8743–8751

    PubMed  CAS  Google Scholar 

  • Grill WM, Snyder AN, Miocinovic S (2004) Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport 15:1137–1140

    Article  PubMed  Google Scholar 

  • Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23:2111–2121

    Article  PubMed  Google Scholar 

  • Hanajima R, Ashby P, Lozano AM, Lang AE, Chen R (2004) Single pulse stimulation of the human subthalamic nucleus facilitates the motor cortex at short intervals. J Neurophysiol 92:1937–1943

    Article  PubMed  Google Scholar 

  • Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23:1916–1923

    PubMed  CAS  Google Scholar 

  • Horsley V (1890) Remarks on the surgery of the central nervous system. Br Med J 2:1286–1292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jankovic J, Aguilar LG (2008) Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 4(4):743–757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johnson MD, Miocinovic S, McIntyre C, Vitek JL (2008) Mechanisms and targets of deep brain stimulation in movement disorders. Neurotherapeutics 5(2):294–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Klemme RM (1940) Surgical treatment of dystonia, paralysis agitans and athetosis. Arch Neurol Psychiatry 44:926

    Google Scholar 

  • Klemme RM (1942) Surgical treatment of dystonia with report of 100 cases. Assoc Res Nerv Ment Dis 21:596–601

    Google Scholar 

  • Krause F (1912) Surgery of the brain and spinal cord based on personal experience, vol III. Rebman Company, New York

    Google Scholar 

  • Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, Zrinzo L, Hariz MI, Friston K, Brown P (2011) Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 134:359–374

    Article  PubMed  Google Scholar 

  • Liu J, Khalil HK, Oweiss KG (2011) Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and parkinsonian states. J Neural Eng 8(4):045002. doi:10.1088/1741-2560/8/4/045002

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano AM, Dostrovsky J, Chen R, Ashby P (2002) Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol 1:225–231

    Article  PubMed  Google Scholar 

  • McConnell GC, So RQ, Hilliard JD, Lopomo J, Grill WM (2012) Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns. J Neurosci 32(45):15657–15668. doi:10.1523/JNEUROSCI.2824-12.2012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McIntyre C. (2004) Powerpoint seminar from which the two figures of this contribution are extracted.

    Google Scholar 

  • McIntyre CC, Thakor NV (2002) Uncovering the mechanisms of deep brain stimulation for Parkinson’s disease through functional imaging, neural recording, and neural modeling. Crit Rev Biomed Eng 30:249–281

    Article  PubMed  Google Scholar 

  • McIntyre CC, Hahn PJ (2010) Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis 38:329–337

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntyre CC, Savasta M, Kerkerian-Le-Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition or both. Clin Neurophysiol 115:1239–1248

    Article  PubMed  Google Scholar 

  • Miocinovic S, Somayajula S, Chitnis S, Vitek JL (2013) History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 70(2):163–171. doi:10.1001/2013.jamaneurol.45, Published online November 12, 2012

    Article  PubMed  Google Scholar 

  • Modolo J, Beuter A (2009a) Linking brain dynamics, neuronal mechanisms and deep brain stimulation: an integrated perspective. Med Eng Phys 31:615–623

    Article  PubMed  Google Scholar 

  • Modolo J, Beuter A (2009b) Cortical contribution to subthalamic activity during chronic electrical stimulation. Brain Stimul 1(3):300–301

    Article  Google Scholar 

  • Montgomery EB (2012) The epistemology of deep brain stimulation and neuronal pathophysiology. Front Integr Neurosci 6:1–8.

    Article  Google Scholar 

  • Montgomery EB Jr, Gale JT (2008) Mechanisms of action of deep brain stimulation (DBS). Neurosci Biobehav Rev 32:388–407

    Article  PubMed  Google Scholar 

  • Ogata A, Tashiro K, Nukuzuma S, Nagashima K, Hall WW (1997) A rat model of Parkinson’s disease induced by Japanese encephalitis virus. J Neurovirol 3(2):141–147

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter JS, Mink JW, Bastian AJ, Zackowski K, Hershey T, Miyawaki E, Koller W, Videen TO (2002) Blood flow responses to deep brain stimulation of thalamus. Neurology 58:1388–1394

    Article  PubMed  CAS  Google Scholar 

  • Pissadaki EK, Bolam JP (2013) The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front Comput Neurosci 7:13. doi:10.3389/fncom.2013.00013

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological rhythmicity in a computational model. J Comput Neurosci 16:211–235

    Article  PubMed  Google Scholar 

  • Rubin JE, McIntyre CC, Turner RS, Wichmann T (2012) Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects. Eur J Neurosci 36:2213–2228. doi:10.1111/j.1460-9568.2012.08108.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Santaniello S, Montgomery EB Jr, Gale JT, Sarma SV (2012) Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation. Front Integr Neurosci 6:35. doi:10.3389/fnint.2012.00035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shon YM, Lee KH, Goerss SJ, Kim IY, Kimble C, Van Gompel JJ, Bennet K, Blaha CD, Chang SY (2010) High frequency stimulation of the subthalamic nucleus evokes striatal dopamine release in a large animal model of human DBS neurosurgery. Neurosci Lett 475:136–140. doi:10.1016/j.neulet.2010.03.060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tass PA (1999) Phase resetting in medicine and biology: stochastic modelling and data analysis. Springer, Berlin

    Book  Google Scholar 

  • Tass PA (2000) Stochastic phase resetting: a theory for deep brain stimulation. Program Theor Phys Suppl 139:301–313

    Article  Google Scholar 

  • Titcombe MS, Glass L, Guehl D, Beuter A (2001) Dynamics of Parkinsonian tremor during deep brain stimulation. Chaos 11(4):766–773

    Article  PubMed  Google Scholar 

  • Urbano FJ, Leznik E, Llinas RR (2002) Cortical activation patterns evoked by afferent axons stimuli at different frequencies: an in vitro voltage-sensitive dye imaging study. Thalamus Rel Syst 1:371–378

    Google Scholar 

  • Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17(3):69–72

    Article  Google Scholar 

  • Vitek JL (2008) Deep brain stimulation: how does it work? Cleve Clin J Med 75(2):S59–S65

    Article  PubMed  Google Scholar 

  • Walker HC, Watts RL, Guthrie S, Wang D, Guthrie BL (2009) Bilateral effects of unilateral subthalamic deep brain stimulation on Parkinson’s disease at 1 year. Neurosurgery 65:302–309

    Article  PubMed  Google Scholar 

  • Whitmer D, de Solages C, Hill B, Yu H, Henderson JM, Bronte-Stewart H (2012) High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front Hum Neurosci 6:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson C, Bryce Beverlin I, Netoff T (2011) Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Front Syst Neurosci 5

    Google Scholar 

  • Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM (2006) Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol 197:244–251

    Article  PubMed  Google Scholar 

  • Woolsey CN, Erickson TC, Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51:476–506

    Article  PubMed  CAS  Google Scholar 

  • Xia R, Berger F, Piallat B, Bayle M, Bouamrani A, Benabid AL (2004) Modulation of protein expression in vitro by electrical stimulation as a function of frequency (abstract). In: Eighth international congress on Parkinson’s disease and movement disorders, Rome

    Google Scholar 

  • Xu W, Russo GS, Hashimoto T, Zhang J, Vitek JL (2008) Subthalamic nucleus stimulation modulates thalamic neuronal activity. J Neurosci 28:11916–11924

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Beuter Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Beuter, A. (2014). Parkinson’s Disease: Deep Brain Stimulation. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_510-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_510-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Parkinson’s Disease: Deep Brain Stimulation
    Published:
    06 July 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_510-3

  2. Parkinson’s Disease: Deep Brain Stimulation
    Published:
    08 May 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_510-2

  3. Original

    Parkinson’s Disease and Deep Brain Stimulation
    Published:
    08 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_510-1