Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Human Balancing Tasks: Power Laws, Intermittency, and Lévy Flights

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_502-5

Synonyms

Definition

In human stick balance intermittency is observed (Fig. 1). Here intermittency denotes the random alternation between phases with extremely low movement amplitudes and phases with high movement amplitudes. This type of intermittency is characterized by power laws in the distributions of corrective movements in real stick balancing and in virtual stick balancing (i.e., balancing an unstable target on a computer screen). These observations are commonly seen as evidence which contrasts neurological control from standard engineered controllers.

Keywords

Milton 
This is a preview of subscription content, log in to check access

References

  1. Asai Y, Tateyama S, Nomura T (2013) Learning an intermittent control strategy for postural balancing using an EMG-based human-computer interface. PLoS ONE 8(5):e62956PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bormann R, Cabrera JL, Milton JG, Eurich CW (2004) Visuomotor tracking on a computer screen: an experimental paradigm to study the dynamics of motor control. Neurocomputing 58–60:517–523CrossRefGoogle Scholar
  3. Cabrera JL, Milton JG (2002) On-off intermittency in a human balancing task. Phys Rev Lett 89:158702–158701PubMedCrossRefGoogle Scholar
  4. Cabrera JL, Milton JG (2004) Human stick balancing: tuning Lévy flights to improve balance control. Chaos 14:691–698PubMedCrossRefGoogle Scholar
  5. Cluff T, Balasubramaniam R (2009) Motor learning characterized by changing Lévy distributions. PLoS ONE 4:e5998PubMedCentralPubMedCrossRefGoogle Scholar
  6. Horsthemke W, Lefever R (1984) Noise-induced transitions. Springer, New YorkGoogle Scholar
  7. Insperger T, Milton J, Stépán G (2013) Acceleration feedback improves balancing against reflex delay. J R Soc Interface 10(79):20120763PubMedCentralPubMedCrossRefGoogle Scholar
  8. Loram ID, Gollee H, Lakie M, Gawthrop P (2011) Human control of an inverted pendulum: Is continuous control necessary? Is intermittent control effective? Is intermittent control physiological? J Physiol 589:307–324PubMedCentralPubMedCrossRefGoogle Scholar
  9. Mehta B, Schaal S (2002) Forward models in visuomotor control. J Neurophysiol 88:942–953PubMedGoogle Scholar
  10. Milton JG, Fuerte A, Bélair C, Lippai J, Kamimura A, Ohira T (2013) Delayed pursuit-escape as a model for virtual stick balancing. Nonlinear Theor Its Appl IEICE 2:1–10Google Scholar
  11. Patzelt F, Pawelzik P (2011) Criticality of adaptive control dynamics. Phys Rev Lett 107:238103PubMedCrossRefGoogle Scholar
  12. Patzelt F, Riegel M, Ernst U, Pawelzik KR (2007) Self-organized critical noise amplification in human closed loop control. Front Comput Neurosci 1:4PubMedCentralPubMedCrossRefGoogle Scholar
  13. Platt N, Spiegel EA, Tresser C (1993) On-off intermittency: a mechanism for bursting. Phys Rev Lett 70:279–282PubMedCrossRefGoogle Scholar
  14. Venkataramani SC, Antonsen TM Jr, Ott E, Sommerer JC (1996) On-off intermittency: power spectrum and fractal properties of time series. Physica D 96:66–99CrossRefGoogle Scholar
  15. Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Wolpert D, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3:1212–1217PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratorio de Dinámica EstocásticaCentro de Física, Instituto Venezolano de Investigaciones CientíficasCaracasVenezuela
  2. 2.Institute for Theoretical PhysicsUniversity of BremenBremenGermany