Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

NeuroElectro Project

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_477-1

Synonyms

Definition

The NeuroElectro Project is an effort to curate data about the electrophysiological properties of neurons. It contains experimental data extracted from the literature about dozens of basic properties (such as resting membrane potential, action potential width, etc.) for hundreds of distinct types of neurons. It can be browsed online at http://neuroelectro.org.

Detailed Description

Computational neuroscientists have argued that the electrophysiological properties of neurons determine their computational roles. Furthermore, models containing or concerning neurons can be constrained or validated in part using empirical data on single-cell electrophysiology. However, compared with imaging or genetic data, these data are infrequently published in a format that permits them to be easily discovered in the literature. The NeuroElectro Project (http://neuroelectro.org, Tripathy et al. 2014) solves this problem by providing a database on the...

This is a preview of subscription content, log in to check access

References

  1. Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsaki G, Cauli B, DeFelipe J, Fairen A, Feldmeyer D, Fishell G, Fregnac Y, Freund TF, Gardner D, Gardner EP, Goldberg JH, Helmstaedter M, Hestrin S, Karube F, Kisvarday ZF, Lambolez B, Lewis DA, Marin O, Markram H, Munoz A, Packer A, Petersen CCH, Rockland KS, Rossier J, Rudy B, Somogyi P, Staiger JF, Tamas G, Thomson AM, Toledo-Rodriguez M, Wang Y, West DC, Yuste R (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568, WOS:000256929300015PubMedCrossRefGoogle Scholar
  2. Hamilton DJ, Shepherd GM, Martone ME, Ascoli GA (2012) An ontological approach to describing neurons and their relationships. Front Neuroinf 6:15CrossRefGoogle Scholar
  3. Larson SD, Martone ME (2013) NeuroLex.org: an online framework for neuroscience knowledge. Front Neuroinf 7:18CrossRefGoogle Scholar
  4. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen T-M, Chi Chin M, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong H-W, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf K-R, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Feng Yuan X, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176PubMedCrossRefGoogle Scholar
  5. Tripathy SJ, Burton SD, Savistskaya J, Urban NN, Gerkin RC (2014) “NeuroElectro: A Window to the World’s Neuron Electrophysiology Data”, Frontiers in Neuroinformatics, April 29Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Centre for High-Throughput Biology and Department of PsychiatryUniversity of British ColumbiaPittsburghCanada
  2. 2.School of Life SciencesArizona State UniversityTempeUSA