Skip to main content

Bursting in Neurons and Small Networks

  • Living reference work entry
  • First Online:

Definition

Bursting refers to patterns of neural activity consisting of episodes of relatively fast spiking separated by intervals of quiescence. Bursting neurons are ubiquitous in the nervous system and play important roles in the production of motor, sensory, and cognitive behaviors. Because bursting is the predominant mode of activity in central pattern generator (CPG) networks that underlie rhythmic motor activity, bursting neurons have been best characterized in invertebrate CPG networks. Bursting neurons fall into two classes, based on whether bursting is an intrinsic neuronal property, resulting solely from the interaction among ionic currents, or whether it is a network property, emerging from the interaction among ionic and synaptic currents.

Detailed Description

Introduction and Background

Bursting patterns consist of episodes of relatively fast spiking (bursts) separated by intervals of either quiescence or subthreshold activity such as subthreshold oscillations (Kispersky...

This is a preview of subscription content, log in via an institution.

References

  • Abbott LF, Marder E, Hooper SL (1991) Oscillating networks: control of burst duration by electrically coupled neurons. Neural Comput 3:487–497

    Article  Google Scholar 

  • Adams WB, Levitan IB (1985) Voltage and ion dependences of the slow currents which mediate bursting in Aplysia neurone R15. J Physiol 360:69–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchholtz F, Golowasch J, Epstein IR, Marder E (1992) Mathematical model of an identified stomatogastric ganglion neuron. J Neurophysiol 67:332–340

    CAS  PubMed  Google Scholar 

  • Butera RJ Jr, Clark JW Jr, Byrne JH (1996) Dissection and reduction of a modeled bursting neuron. J Comput Neurosci 3:199–223

    Article  PubMed  Google Scholar 

  • Calabrese RL (1995) Oscillation in motor pattern-generating networks. Current Opin Neurobiol 5:816–823

    Article  CAS  Google Scholar 

  • Calabrese RL, Nadim F, Olsen OH (1995) Heartbeat control in the medicinal leech: a model system for understanding the origin, coordination, and modulation of rhythmic motor patterns. J Neurobiol 27:390–402

    Article  CAS  PubMed  Google Scholar 

  • Canavier CC, Clark JW, Byrne JH (1991) Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. J Neurophysiol 66:2107–2124

    CAS  PubMed  Google Scholar 

  • Chow CC, Kopell N (2000) Dynamics of spiking neurons with electrical coupling. Neural Comput 12:1643–1678

    Article  CAS  PubMed  Google Scholar 

  • Cymbalyuk GS, Gaudry Q, Masino MA, Calabrese RL (2002) Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J Neurosci 22:10580–10592

    CAS  PubMed  Google Scholar 

  • Desroches MK, Kaper TJ, Krupa M (2013) Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square wave burster. Chaos 23:1–13

    Article  Google Scholar 

  • Ermentrout GB, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural oscillators. J Math Biol 29:195–217

    Article  Google Scholar 

  • Feng HF (2001) Is the integrate-and-fire model good enough? A review. Neural Netw 14:955–975

    Article  CAS  PubMed  Google Scholar 

  • Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzhugh R (1969) Mathematical models for excitation and propagation in nerve. McGraw Hill, New York

    Google Scholar 

  • Friesen WOP, Pearce RA (1993) Mechanisms of intersegmental coordination in leech locomotion. Semin Neurosci 5:41–47

    Article  Google Scholar 

  • Gola M, Selverston A (1981) Ionic requirements for bursting activity in lobster stomatogastric neurons. J Comp Physiol 145:191–207

    Article  CAS  Google Scholar 

  • Golowasch J, Buchholtz F, Epstein IR, Marder E (1992) Contribution of individual ionic currents to activity of a model stomatogastric ganglion neuron. J Neurophysiol 67:341–349

    CAS  PubMed  Google Scholar 

  • Graham Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc Royal Soc Lond B 84:308–319

    Article  Google Scholar 

  • Grillner S, Matsushima T, Wadden T, Tegner J, El Manira A, Wallen P (1993) The neurophysiological bases of undulatory locomotion in vertebrates. Semin Neurosci 5:17–27

    Article  Google Scholar 

  • Guckenheimer J, Gueron S, Harris-Warrick RM (1993) Mapping the dynamics of a bursting neuron. Philos Trans R Soc Lond B Biol Sci 341:345–359

    Article  CAS  PubMed  Google Scholar 

  • Guckenheimer J, Harris-Warrick R, Peck J, Willms A (1997) Bifurcation, bursting, and spike frequency adaptation. J Comput Neurosci 4:257–277

    Article  CAS  PubMed  Google Scholar 

  • Harris-Warrick RM, Flamm RE (1987) Multiple mechanisms of bursting in a conditional bursting neuron. J Neurosci 7:2113–2128

    CAS  PubMed  Google Scholar 

  • Hill AA, Masino MA, Calabrese RL (2002) Model of intersegmental coordination in the leech heartbeat neuronal network. J Neurophysiol 87:1586–1602

    PubMed  Google Scholar 

  • Hindmarsh J, Cornelius P (2005) The development of the Hindmarsh-Rose model for bursting. In: Bursting: the genesis of rhythm in the nervous system. World Scientific, Hackensack

    Google Scholar 

  • Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B 221:87–102

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hooper SL, Marder E (1987) Modulation of the lobster pyloric rhythm by the peptide proctolin. J Neurosci 7:2097–2112

    CAS  PubMed  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, New York

    Book  Google Scholar 

  • Izhikevich EM (2000a) Subcritical elliptic bursting of Bautin type. SIAM J Appl Math 60:503–535

    Article  Google Scholar 

  • Izhikevich EM (2000b) Neural excitability, spiking, and bursting. Int J Bifurcat Chaos 10:1171–1266

    Article  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge

    Google Scholar 

  • Jones SR, Mulloney B, Kaper TJ, Kopell N (2003) Coordination of cellular pattern-generating circuits that control limb movements: the sources of stable differences in intersegmental phases. J Neurosci 23:3457–3468

    CAS  PubMed  Google Scholar 

  • Kepler TB, Marder E, Abbott LF (1990) The effect of electrical coupling on the frequency of model neuronal oscillators. Science 248:83–85

    Article  CAS  PubMed  Google Scholar 

  • Kepler TB, Abbott LF, Marder E (1992) Reduction of conductance-based neuron models. Biol Cybern 66:381–387

    Article  CAS  PubMed  Google Scholar 

  • Kispersky TW, White JA, Rotstein HG (2010) The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells. PloS One 5:1–21

    Article  Google Scholar 

  • Kopell N, Abbott LF, Soto-Trevino C (1998) On the behavior of a neural oscillator electrically coupled to a bistable element. Phys D 121:367–395

    Article  Google Scholar 

  • Kramer RH, Zucker RS (1985) Calcium-induced inactivation of calcium current causes the inter-burst hyperpolarization of Aplysia bursting neurones. J Physiol 362:131–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation e’lectrique des nerfs traite’e comme une polarization. J Physiol Pathol Gen 9:620–635

    Google Scholar 

  • Malashchenko T, Shilnikov A, Cymbalyuk G (2011) Six types of multistability in a neuronal model based on slow calcium current. PloS One 6:e21782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manor Y, Rinzel J, Segev I, Yarom Y (1997) Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol 77:2736–2752

    CAS  PubMed  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    CAS  PubMed  Google Scholar 

  • Mulloney B, Smarandache C (2010) Fifty years of CPGs: two neuroethological papers that shaped the course of neuroscience. Front Behav Neurosci 4(45):1–8

    Google Scholar 

  • Nadim F, Olsen Ø, Schutter E, Calabrese R (1995a) The interplay of intrinsic and synaptic currents in a half-center oscillator. In: Bower J (ed) The neurobiology of computation. Springer, US, pp 269–274

    Google Scholar 

  • Nadim F, Olsen OH, De Schutter E, Calabrese RL (1995b) Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents. J Comput Neurosci 2:215–235

    Article  CAS  PubMed  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line stimulating nerve axon. Proc IRE 50:2061–2070

    Article  Google Scholar 

  • Nusbaum MP, Beenhakker MP (2002) A small-systems approach to motor pattern generation. Nature 417:343–350

    Article  CAS  PubMed  Google Scholar 

  • Rinzel J (1986) A formal classification of bursting mechanisms in excitable systems. In: Proceedings of the international congress of mathematics, AMS, Providence, pp 1578–1593

    Google Scholar 

  • Rinzel JE, Ermentrout B (1998) Analysis of neural excitability and oscillation. In: Koch CS, Segev I (eds) Methods in neuronal modeling: from ions to networks, 2nd edn. MIT Press, Cambridge, pp 251–291

    Google Scholar 

  • Rinzel J, Lee YS (1987) Dissection of a model for neuronal parabolic bursting. J Math Biol 25:653–675

    Article  CAS  PubMed  Google Scholar 

  • Schwemmer M, Lewis T (2012) The theory of weakly coupled oscillators. In: Schultheiss NW, Prinz AA, Butera RJ (eds) Phase response curves in neuroscience. Springer, New York, pp 3–31

    Chapter  Google Scholar 

  • Selverston AI (2005) A neural infrastructure for rhythmic motor patterns. Cell Mol Neurobiol 25:223–244

    Article  PubMed  Google Scholar 

  • Selverston AI, Szucs A, Huerta R, Pinto R, Reyes M (2009) Neural mechanisms underlying the generation of the lobster gastric mill motor pattern. Front Neural Circuit 3:12

    Google Scholar 

  • Sherman A, Rinzel J (1992) Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc Natl Acad Sci U S A 89:2471–2474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skinner FK, Mulloney B (1998) Intersegmental coordination of limb movements during locomotion: mathematical models predict circuits that drive swimmeret beating. J Neurosci 18:3831–3842

    CAS  PubMed  Google Scholar 

  • Skinner FK, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J Comput Neurosci 1:69–87

    Article  CAS  PubMed  Google Scholar 

  • Skinner FK, Kopell N, Mulloney B (1997) How does the crayfish swimmeret system work? Insights from nearest-neighbor coupled oscillator models. J Comput Neurosci 4:151–160

    Article  CAS  PubMed  Google Scholar 

  • Smarandache C, Hall WM, Mulloney B (2009) Coordination of rhythmic motor activity by gradients of synaptic strength in a neural circuit that couples modular neural oscillators. J Neurosci 29:9351–9360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith GD, Cox CL, Sherman SM, Rinzel J (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol 83:588–610

    CAS  PubMed  Google Scholar 

  • Soto-Trevino C, Rabbah P, Marder E, Nadim F (2005) Computational model of electrically coupled, intrinsically distinct pacemaker neurons. J Neurophysiol 94:590–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor AL, Goaillard JM, Marder E (2009) How multiple conductances determine electrophysiological properties in a multicompartment model. J Neurosci 29:5573–5586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tazaki K, Cooke IM (1990) Characterization of Ca current underlying burst formation in lobster cardiac ganglion motorneurons. J Neurophysiol 63:370–384

    CAS  PubMed  Google Scholar 

  • Wang X-J, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84–97

    Article  Google Scholar 

  • Zhang B, Wootton JF, Harris-Warrick RM (1995) Calcium-dependent plateau potentials in a crab stomatogastric ganglion motor neuron. II. Calcium-activated slow inward current. J Neurophysiol 74:1938–1946

    CAS  PubMed  Google Scholar 

Further Reading

  • Coombes S, Bressloff PC (2005) Bursting: the genesis of rhythm in the nervous system. World Scientific, Hackensack

    Book  Google Scholar 

  • Ermentrout GB (1992) Stable periodic-solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J Appl Math 52:1665–1687

    Article  Google Scholar 

Download references

Acknowledgment

Supported by grants NIH MH060605 (FN), NSF DMS1313861(HGR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Fox, D.M., Rotstein, H.G., Nadim, F. (2014). Bursting in Neurons and Small Networks. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_454-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_454-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics