Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Receptive Field Modeling

  • Brian BlaisEmail author
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4614-7320-6_360-2



The mathematical modeling of properties of sensory neurons, specifically relating to the patterns that elicit strong neuronal responses.

Detailed Description

The term receptive field (RF) refers to any of the following, depending on the context:
  1. 1.

    The sensory area over which sensory neurons give strong responses (e.g., portion of the visual field for visual neurons, frequency range for auditory neurons, etc.)

  2. 2.

    The input patterns that elicit those strong responses

  3. 3.

    The pattern of strong and weak synaptic strengths that results in the strong responses to the specific patterns

  4. 4.

    The spatiotemporal response properties of the sensory neurons, often referred to as a spatiotemporal receptive field


Modeling refers to the mathematicalmodeling of the response properties of the neuron or the development of the pattern of synaptic strengths and/or the neural dynamics that give rise to those response properties. Thus, the models...


Receptive Field Independent Component Analysis Auditory Cortex Independent Component Analysis Response Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2(2):284–299PubMedCrossRefGoogle Scholar
  2. Alonso J-M, Chen Y (2009) Receptive field. Scholarpedia 4(1):5393CrossRefGoogle Scholar
  3. Bear MF, Connors BW, Paradiso MA (2007) Neuroscience. Wolters Kluwer Health, PhiladelphiaGoogle Scholar
  4. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48PubMedGoogle Scholar
  5. Blais BS, Cooper L (2008) BCM theory. Scholarpedia 3(3):1570CrossRefGoogle Scholar
  6. Blais BS, Intrator N, Shouval H, Cooper LN (1998) Receptive field formation in natural scene environments: comparison of single cell learning rules. Neural Comput 10(7):1797–1813PubMedCrossRefGoogle Scholar
  7. Blais B, Cooper LN, Shouval H (2000) Formation of direction selectivity in natural scene environments. Neural Comput 12(5):1057–1066Google Scholar
  8. Cooper LN, Bear MF (2012) The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci 13(11):798–810PubMedCrossRefGoogle Scholar
  9. Cooper LN, Intrator N, Blais BS, Shouval HZ (2004) Theory of cortical plasticity. World Scientific, River EdgeCrossRefGoogle Scholar
  10. Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187(3):517–552PubMedPubMedCentralGoogle Scholar
  11. Finn IM, Ferster D (2007) Computational diversity in complex cells of cat primary visual cortex. J Neurosci 27(36):9638–9648PubMedCrossRefGoogle Scholar
  12. Gjorgjieva J, Clopath C, Audet J, Pfister J (2011) A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations. Proc Natl Acad Sci 108(48):19383–19388PubMedCrossRefPubMedCentralGoogle Scholar
  13. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154PubMedPubMedCentralGoogle Scholar
  14. Hyvärinen A (2010) Statistical models of natural images and cortical visual representation. Top Cognit Sci 2(2):251–264CrossRefGoogle Scholar
  15. Hyvärinen A, Hoyer PO, Inki M (2001a) Topographic independent component analysis. Neural Comput 13(7):1527–1558PubMedCrossRefGoogle Scholar
  16. Hyvärinen A, Karhunen J, Oja E (2001b) Independent component analysis, vol 26. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  17. Hyvärinen A, Hurri J, Hoyer P (2009) Natural image statistics: a probabilistic approach to early computational vision, vol 39. Springer, New YorkGoogle Scholar
  18. Jones JP, Palmer LA (1987) The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1187–1258PubMedGoogle Scholar
  19. Kohonen T (2001) Self-organizing maps, vol 30. Springer, New YorkGoogle Scholar
  20. Lee H, Ekanadham C, Ng A (2007) Sparse deep belief net model for visual area V2. In: Advances in neural information processing systems. Platt JC, Koller D, Singer Y and Roweis ST. Curran Associates, Inc., Red Hook, NY. pp 873–880Google Scholar
  21. Olshausen BA, Field DJ (1996) Emergence of simple cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609PubMedCrossRefGoogle Scholar
  22. Rao R, Olshausen B, Lewicki M (2002) Probabilistic models of the brain: perception and neural function. MIT Press, Cambridge, MAGoogle Scholar
  23. Rodieck RW (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis Res 5(12):583–601PubMedCrossRefGoogle Scholar
  24. Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements of macaque V1 receptive fields. Neuron 46(6):945–956PubMedCrossRefGoogle Scholar
  25. Saul AB, Humphrey AL (1990) Spatial and temporal properties of lagged and nonlagged cells in the cat lateral geniculate nucleus. J Neurophysiol 68:1190–1208Google Scholar
  26. Saxe A, Bhand M, Mudur R, Suresh B, Ng A (2011) Unsupervised learning models of primary cortical receptive fields and receptive field plasticity. In: Advances in neural information processing systems. Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F and Weinberger KQ. Curran Associates, Inc., Red Hook, NY. pp 1971–1979Google Scholar
  27. Shouval HZ, Goldberg DH, Jones JP, Beckerman M, Cooper LN (2000) Structured long-range connections can provide a scaffold for orientation maps. J Neurosci, 20(3):1119–1128Google Scholar
  28. Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439(7079):978–982PubMedCrossRefGoogle Scholar
  29. Stork DG, Wilson HR (1990) Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? JOSA A 7(8):1362–1373CrossRefGoogle Scholar
  30. van Hateren J, Ruderman DL (1998) Independent component analysis of natural image sequences yields spatiotemporal filters similar to simple cells in primary visual cortex. Proc R Soc Lond B 265:2315–2320CrossRefGoogle Scholar
  31. Wolfe J, Palmer L (1998) Temporal diversity in the lateral geniculate nucleus of cat. Vis Neurosci 15(04):653–675PubMedCrossRefGoogle Scholar
  32. Wong RO (1999) Retinal waves and visual system development. Annu Rev Neurosci 22(1):29–47PubMedCrossRefGoogle Scholar
  33. Yeung LC, Shouval HZ, Blais BS, Cooper LN (2004) Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Proc Natl Acad Sci U S A 101(41):14943–14948PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Science and TechnologyBryant UniversitySmithfieldUSA
  2. 2.Institute for Brain and Neural SystemsBrown University Providence