Skip to main content

Short Term Plasticity, Biophysical Models

  • Living reference work entry
  • First Online:
  • 206 Accesses

Definition

Short-term plasticity refers to changes in synaptic efficacy in response to presynaptic spiking that persist for a few seconds at most but more often decay over a timescale of a few hundred milliseconds. There are two primary types of short-term plasticity: short-term depression and short-term facilitation. Short-term depression is a reduction in synaptic efficacy that is often, but not always, caused by a transient depletion of neurotransmitter vesicles. Short-term facilitation is an increase in synaptic efficacy often caused by a transient increase in the number of vesicles released by presynaptic action potentials. The detailed biophysical mechanisms underlying synaptic facilitation are discussed in Facilitation, Biophysical Models, and we therefore focus on more phenomenological models of facilitation here.

Detailed Description

Stochastic Models of Short-Term Depression Arising from Neurotransmitter Depletion

Short-term depression is often believed to arise primarily...

This is a preview of subscription content, log in via an institution.

References

  • Chance F, Nelson S, Abbott L (1998) Synaptic depression and the temporal response characteristics of v1 cells. J Neurosci 18:4785

    CAS  PubMed  Google Scholar 

  • Cook DL, Schwindt PC, Grande LA, Spain WJ (2003) Synaptic depression in the localization of sound. Nature 421:66–70

    Article  CAS  PubMed  Google Scholar 

  • de la Rocha J, Parga N (2005) Short-term synaptic depression causes a non-monotonic response to correlated stimuli. J Neurosci 25:8416–8431

    Article  PubMed  Google Scholar 

  • Fuhrmann G, Segev I, Markram H, Tsodyks M (2002) Coding of temporal information by activity dependent synapses. J Neurophysiol 87:140

    PubMed  Google Scholar 

  • Goldman M (2004) Enhancement of information transmission efficiency by synaptic failures. Neural Comput 16:1137–1162

    Article  PubMed  Google Scholar 

  • Goldman MS, Maldonado P, Abbott L (2002) Redundancy reduction and sustained ring with stochastic depressing synapses. J Neurosci 22:584–591

    CAS  PubMed  Google Scholar 

  • Grande LA, Spain WJ (2005) Synaptic depression as a timing device. J Physiol 20:201–210

    Article  Google Scholar 

  • Hanson JE, Jaeger D (2002) Short-term plasticity shapes the response to simulated normal and parkinsonian input patterns in the globus pallidus. J Neurosci 22:5164–5172

    CAS  PubMed  Google Scholar 

  • Lindner B, Ganglo D, Longtin A, Lewis JE (2009) Broadband coding with dynamic synapses. J Neurosci 29:2076–2087

    Article  CAS  PubMed  Google Scholar 

  • Maass W, Zador AM (1999) Dynamic stochastic synapses as computational units. Neural Comput 11:903–917

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A 95:5323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matveev V, Wang XJ (2000) Implications of all-or-none synaptic transmission and short term depression beyond vesicle depletion: a computational study. J Neurosci 20:1575–1588

    CAS  PubMed  Google Scholar 

  • McDonnell MD, Mohan A, Stricker C (2013) Mathematical analysis and algorithms for efficiently and accurately implementing stochastic simulations of short-term synaptic depression and facilitation. Front Comput Neurosci 7:58

    Article  PubMed Central  PubMed  Google Scholar 

  • Merkel M, Lindner B (2010) Synaptic filtering of rate-coded information. Phys Rev E 81:041921

    Article  Google Scholar 

  • Mohan A, McDonnell MD, Stricker C (2013) Interaction of short-term depression and ring dynamics in shaping single neuron encoding. Front Comput Neurosci 7:41

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfister JP, Dayan P, Lengyel M (2010) Synapses with short-term plasticity are optimal estimators of presynaptic membrane potentials. Nat Neurosci 13:1271–1275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reich S, Rosenbaum R (2013) The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability. J Comput Neurosci 35:1–15

    Google Scholar 

  • Rosenbaum R, Rubin J, Doiron B (2012) Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS Comput Biol 8:e1002557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenbaum R, Rubin JE, Doiron B (2013) Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations. J Neurophysiol 109:475–484

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosenbaum R, Zimnik A, Zheng F, Turner RS, Alzheimer C, Doiron B, Rubin JE (2014) Axonal and synaptic failure suppress the transfer of ring rate oscillations, synchrony and information during high frequency deep brain stimulation. Neurobiol Dis 62:86–99

    Article  PubMed  Google Scholar 

  • Rothman JS, Cathala L, Steuber V, Silver RA (2009) Synaptic depression enables neuronal gain control. Nature 457:1015–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott P, Cowan AI, Stricker C (2012) Quantifying impacts of short-term plasticity on neuronal information transfer. Phys Rev E 85:041921

    Article  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94:719–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Comput 10:821–835

    Article  CAS  PubMed  Google Scholar 

  • Varela JA, Sen K, Gibson J, Fost J, Abbott LF et al (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17:7926–7940

    CAS  PubMed  Google Scholar 

  • Vere-Jones D (1966) Simple stochastic models for the release of quanta of transmitter from a nerve terminal. Aust NZ J Stat 8:53–63

    Article  Google Scholar 

  • Wang XJ (1999) Fast burst ring and short-term synaptic plasticity: a model of neocortical chattering neurons. J Neurosci 89:347–362

    CAS  Google Scholar 

  • Wong AY, Graham BP, Billups B, Forsythe ID (2003) Distinguishing between presynaptic and postsynaptic mechanisms of short-term depression during action potential trains. J Neurosci 23:4868–4877

    CAS  PubMed  Google Scholar 

  • Xu J, Wu LG (2005) The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46:633–645

    Article  CAS  PubMed  Google Scholar 

  • Zador A (1998) Impact of synaptic unreliability on the information transmitted by spiking neurons. J Neurophysiol 79:1219

    CAS  PubMed  Google Scholar 

  • Zucker R, Regehr W (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Branco T, Staras K (2009) The probability of neurotransmitter release: variability and feedback control at single synapses. Nat Rev Neurosci 10:373–383

    Article  CAS  PubMed  Google Scholar 

  • Senn W, Markram H, Tsodyks M (2001) An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Comput 13:35–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Rosenbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Rosenbaum, R. (2014). Short Term Plasticity, Biophysical Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_358-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_358-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics