Skip to main content

Facilitation, Biophysical Models

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience
  • 207 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bennett MR, Farnell L, Gibson WG (2004) The facilitated probability of quantal secretion within an array of calcium channels of an active zone at the amphibian neuromuscular junction. Biophys J 86:2674–2690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bertram R, Sherman A, Stanley EF (1996) Single-domain/bound calcium hypothesis of transmitter release and facilitation. J Neurophysiol 75:1919–1931

    PubMed  CAS  Google Scholar 

  • Bertram R, Swanson J, Yousef M, Feng ZP, Zamponi GW (2003) A minimal model for G protein-mediated synaptic facilitation and depression. J Neurophysiol 90:1643–1653

    Article  PubMed  CAS  Google Scholar 

  • Blatow M, Caputi A, Burnashev N, Monyer H, Rozov A (2003) Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38:79–88

    Article  PubMed  CAS  Google Scholar 

  • Bornschein G, Arendt O, Hallermann S, Brachtendorf S, Eilers J, Schmidt H (2013) Paired-pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during high-frequency activation. J Physiol 591.13:3355–3370.

    PubMed  CAS  Google Scholar 

  • Brody DL, Yue DT (2000) Relief of G-protein inhibition of calcium channels and short-term synaptic facilitation in cultured hippocampal neurons. J Neurosci 20:889–898

    PubMed  CAS  Google Scholar 

  • Burnashev N, Rozov A (2005) Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium 37:489–495

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Leal K, Nanou E (2013) Calcium channels and short-term synaptic plasticity. J Biol Chem 288:10742–10749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Debanne D, Bialowas A, Rana S (2013) What are the mechanisms for analogue and digital signallingin the brain? Nature Neurosci 14:63–69

    Article  CAS  Google Scholar 

  • Delaney KR, Tank DW (1994) A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. J Neurosci 14:5885–5902

    PubMed  CAS  Google Scholar 

  • Dittman JS, Regehr WG (1998) Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J Neurosci 18:6147–6162

    PubMed  CAS  Google Scholar 

  • Dittman JS, Kreitzer AC, Regehr WG (2000) Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 20:1374–1385

    PubMed  CAS  Google Scholar 

  • Felmy F, Neher E, Schneggenburger R (2003) Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37:801–811

    Article  PubMed  CAS  Google Scholar 

  • Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269–274

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fuhrmann G, Cowan A, Segev I, Tsodyks M, Stricker C (2004) Multiple mechanisms govern the dynamics of depression at neocortical synapses of young rats. J Physiol 557:415–438

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gentile L, Stanley EF (2005) A unified model of presynaptic release site gating by calcium channel domains. Eur J Neurosci 21:278–282

    Article  PubMed  Google Scholar 

  • Hennig MH (2013) Theoretical models of synaptic short term plasticity. Front Comp Neurosci. doi:10.3389/fncom.2013.00045

    Google Scholar 

  • Hosoi N, Sakaba T, Neher E (2007) Quantitative analysis of calcium-dependent vesicle recruitment and its functional role at the calyx of Held synapse. J Neurosci 27:14286–14298

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB, Redman SJ (2003) Calcium dynamics, buffering, and buffer saturation in the boutons of dentate granule-cell axons in the hilus. J Neurosci 23:1612–1621

    PubMed  CAS  Google Scholar 

  • Katz B, Miledi R (1965) The effect of calcium on acetylcholine release from motornerve terminals. Proc R Soc B 161:496–503

    Article  CAS  Google Scholar 

  • Klingauf J, Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells. Biophys J 72:674–690

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maeda H, Ellis-Davies GC, Ito K, Miyashita Y, Kasai H (1999) Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron 24:989–1002

    Article  PubMed  CAS  Google Scholar 

  • Matveev V, Sherman A, Zucker RS (2002) New and corrected simulations of synaptic facilitation. Biophys J 83:1368–1373

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matveev V, Zucker RS, Sherman A (2004) Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophys J 86:2691–2709

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matveev V, Bertram R, Sherman A (2006) Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation. J Neurophysiol 96:3389–3397

    Article  PubMed  Google Scholar 

  • Millar AG, Zucker RS, Ellis-Davies GC, Charlton MP, Atwood HL (2005) Calcium sensitivity of neurotransmitter release differs at phasic and tonic synapses. J Neurosci 25:3113–3125

    Article  PubMed  CAS  Google Scholar 

  • Mochida S (2011) Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity. Neurosci Res 70:16–23

    Article  PubMed  Google Scholar 

  • Muller A, Kukley M, Stausberg P, Beck H, Muller W, Dietrich D (2005) Endogenous Ca2+ buffer concentration and Ca2+ microdomains in hippocampal neurons. J Neurosci 25:558–565

    Article  PubMed  CAS  Google Scholar 

  • Nadkarni S, Bartol TM, Sejnowski TJ, Levine H (2010) Modelling vesicular release at hippocampal synapses. PLoS Comput Biol 6:e1000983

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nadkarni S, Bartol TM, Stevens CF, Sejnowski TJ, Levine H (2012) Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. Proc Natl Acad Sci USA 109:14657–14662

    Article  PubMed Central  PubMed  Google Scholar 

  • Neher E (1998a) Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24:345–357

    Article  PubMed  CAS  Google Scholar 

  • Neher E (1998b) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20:389–399

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872

    Article  PubMed  CAS  Google Scholar 

  • Orduz D & Llano I (2007) Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells. Proc Natl Acad Sci USA 104: 17831–17836

    Google Scholar 

  • Pan B, Zucker RS (2009) A general model of synaptic transmission and short-term plasticity. Neuron 62:539–554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Parnas H, Dudel J, Parnas I (1986) Neurotransmitter release and its facilitation in crayfish. VII. Another voltage dependent process beside Ca entry controls the time course of phasic release. Pflugers Arch 406:121–130

    Article  PubMed  CAS  Google Scholar 

  • Rahamimoff R (1968) A dual effect of calcium ions on neuromuscular facilitation. J Physiol 195:471–480

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sorensen JB (2004) Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch 448:347–362

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Wesseling JF (1998) Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21:415–424

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Schlumpberger T, Kim T, Lueker M, Zucker R (2000) Effects of mobile buffers on facilitation: experimental and computational studies. Biophys J 78:2735–2751

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575

    Article  PubMed  CAS  Google Scholar 

  • Wang LY, Kaczmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394:384–388

    Article  PubMed  CAS  Google Scholar 

  • Worden MK, Bykhovskaia M, Hackett JT (1997) Facilitation at the lobster neuromuscular junction: a stimulus-dependent mobilization model. J Neurophysiol 78:417–428

    PubMed  CAS  Google Scholar 

  • Xu J, He L, Wu LG (2007) Role of Ca(2+) channels in short-term synaptic plasticity. Curr Opin Neurobiol 17:352–359

    Article  PubMed  CAS  Google Scholar 

  • Yamada MW, Zucker RS (1992) Time course of transmitter release calculated from stimulations of a calcium diffusion model. Biophys J 61:671–682

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Matveev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Matveev, V. (2014). Facilitation, Biophysical Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_347-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_347-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics