Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Models of Fly Lobula Plate Tangential Cells (LPTCs)

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_331-1

Definition

A network of around 60 highly interconnected interneurons, the lobula plate tangential cells (LPTCs), is at the core of optic flow calculations in the fly visual system. Exquisite data is available for these cells on their anatomy and electrophysiology in vivo, including the characterization of responses to visual stimulation. Consequently, it has been possible to derive models that reproduce the morphology and the detailed electrophysiology of the cells within the network and to associate the features of the network to optic flow computations that it performs. The LPTC network therefore is a prime example of a neural circuit where sophisticated computations, connectivity schemes, and anatomy are understood in a unifying manner.

Detailed Description

Circuit Overview of the Lobula Plate

The lobula plate in the fly is a neural center for course control during flight (Borst and Haag 2002). It encodes visual motion information in a retinotopic manner: Neighborhood relationships...

Keywords

Attenuation Convolution 
This is a preview of subscription content, log in to check access

Notes

Acknowledgments

I would like to thank Alexander Borst for the helpful discussions and for reading this manuscript.

References

  1. Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland DK (1991) Reading a neural code. Science 252(80):1854–1857PubMedCrossRefGoogle Scholar
  2. Borst A (2012) Fly motion vision: from optic flow to visual course control. e-Neuroforum 3:59–66CrossRefGoogle Scholar
  3. Borst A, Egelhaaf M (1992) In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. Proc Natl Acad Sci U S A 89:4139–4143PubMedCentralPubMedCrossRefGoogle Scholar
  4. Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J Comput Neurosci 3:313–336PubMedCrossRefGoogle Scholar
  5. Borst A, Haag J (2001) Effects of mean firing on neural information rate. J Comput Neurosci 10:213–221PubMedCrossRefGoogle Scholar
  6. Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188:419–437CrossRefGoogle Scholar
  7. Borst A, Weber F (2011) Neural action fields for optic flow based navigation: a simulation study of the fly lobula plate network. PLoS One 6:e16303PubMedCentralPubMedCrossRefGoogle Scholar
  8. Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosci 33:49–70PubMedCrossRefGoogle Scholar
  9. Budd JML, Kovács K, Ferecskó AS et al (2010) Neocortical axon arbors trade-off material and conduction delay conservation. PLoS Comput Biol 6:e1000711PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cuntz H (2012) The dendritic density field of a cortical pyramidal cell. Front Neuroanat 6:2PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cuntz H, Haag J, Borst A (2003) Neural image processing by dendritic networks. Proc Natl Acad Sci U S A 100:11082–11085PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cuntz H, Borst A, Segev I (2007a) Optimization principles of dendritic structure. Theor Biol Med Model 4:21PubMedCentralPubMedCrossRefGoogle Scholar
  13. Cuntz H, Haag J, Forstner F et al (2007b) Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons. Proc Natl Acad Sci U S A 104:10229–10233PubMedCentralPubMedCrossRefGoogle Scholar
  14. Cuntz H, Forstner F, Haag J, Borst A (2008) The morphological identity of insect dendrites. PLoS Comput Biol 4:e1000251PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cuntz H, Forstner F, Borst A, Häusser M (2010) One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Comput Biol 6:e1000877PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cuntz H, Mathy A, Häusser M (2012) A scaling law derived from optimal dendritic wiring. Proc Natl Acad Sci U S A 109:11014–11018PubMedCentralPubMedCrossRefGoogle Scholar
  17. Dürr V, Egelhaaf M (1999) In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons. J Neurophysiol 82:3327–3338PubMedGoogle Scholar
  18. Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network. Biol Cybern 52:123–140CrossRefGoogle Scholar
  19. Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurones. Biol Cybern 52:195–209Google Scholar
  20. Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells. Biol Cybern 52:267–280CrossRefGoogle Scholar
  21. Eichner H, Joesch M, Schnell B et al (2011) Internal structure of the fly elementary motion detector. Neuron 70:1155–1164PubMedCrossRefGoogle Scholar
  22. Elyada YM, Haag J, Borst A (2009) Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons. Nat Neurosci 12:327–332PubMedCrossRefGoogle Scholar
  23. Farrow K, Borst A, Haag J (2005) Sharing receptive fields with your neighbors: tuning the vertical system cells to wide field motion. J Neurosci 25:3985–3993PubMedCrossRefGoogle Scholar
  24. Farrow K, Haag J, Borst A (2006) Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron. Nat Neurosci 9:1312–1320PubMedCrossRefGoogle Scholar
  25. Gauck V, Egelhaaf M, Borst A (1997) Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system. J Comp Neurol 381:489–499PubMedCrossRefGoogle Scholar
  26. Geiger G, Nässel DR (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurones. Nature 293:398–399PubMedCrossRefGoogle Scholar
  27. Haag J, Borst A (1996) Amplification of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379:639–641CrossRefGoogle Scholar
  28. Haag J, Borst A (2001) Recurrent network interactions underlying flow-field selectivity of visual interneurons. J Neurosci 21:5685–5692PubMedGoogle Scholar
  29. Haag J, Borst A (2002) Dendro-dendritic interactions between motion-sensitive large-field neurons in the fly. J Neurosci 22:3227–3233PubMedGoogle Scholar
  30. Haag J, Borst A (2004) Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nat Neurosci 7:628–634PubMedCrossRefGoogle Scholar
  31. Haag J, Borst A (2005) Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly. J Comp Physiol A 191:445–454CrossRefGoogle Scholar
  32. Haag J, Borst A (2008) Electrical coupling of lobula plate tangential cells to a heterolateral motion-sensitive neuron in the fly. J Neurosci 28:14435–14442PubMedCrossRefGoogle Scholar
  33. Haag J, Theunissen F, Borst A (1997) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties. J Comput Neurosci 4:349–369PubMedCrossRefGoogle Scholar
  34. Haag J, Vermeulen A, Borst A (1999) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: III. Visual response properties. J Comput Neurosci 7:213–234PubMedCrossRefGoogle Scholar
  35. Haag J, Wertz A, Borst A (2007) Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J Neurosci 27:1992–2000PubMedCrossRefGoogle Scholar
  36. Haag J, Wertz A, Borst A (2010) Central gating of fly optomotor response. Proc Natl Acad Sci U S A 107:20104–20109PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hassenstein B, Reichardt W (1956) Systemtheoretische analyze der zeit-, reihenfolgen- und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Zeitschrift fuer Naturforsch 11b:513–524Google Scholar
  38. Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly – I. The horizontal cells: structure and signals. Biol Cybern 45:143–156CrossRefGoogle Scholar
  39. Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly – II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46:67–79CrossRefGoogle Scholar
  40. Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384:463–466PubMedCrossRefGoogle Scholar
  41. Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79:1902–1917PubMedGoogle Scholar
  42. Laughlin SB (1999) Visual motion: dendritic integration makes sense of the world. Curr Biol 9:R15–R17PubMedCrossRefGoogle Scholar
  43. Maisak MS, Haag J, Ammer G et al (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500:212–216PubMedCrossRefGoogle Scholar
  44. Meyer EP, Matute C, Streit P, Nässel DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216PubMedCrossRefGoogle Scholar
  45. Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 527:491–527CrossRefGoogle Scholar
  46. Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. MIT Press/Wiley, New York, pp 377–390Google Scholar
  47. Rieke F, Warland DK, de Ruyter van Steveninck RR, Bialek W (1999) Spikes – exploring the neural code. MIT Press, Cambridge, MAGoogle Scholar
  48. De Ruyter van Steveninck RR, Bialek W (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences. Proc R Soc B 234:379–414CrossRefGoogle Scholar
  49. Single S, Borst A (1998) Dendritic integration and its role in computing image velocity. Science 281(80):1848–1850PubMedCrossRefGoogle Scholar
  50. Takemura S, Bharioke A, Lu Z et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181PubMedCentralPubMedCrossRefGoogle Scholar
  51. Warzecha A-K, Egelhaaf M, Borst A (1993) Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. J Neurophysiol 69:329–339PubMedGoogle Scholar
  52. Weber F, Eichner H, Cuntz H, Borst A (2008) Eigenanalysis of a neural network for optic flow processing. New J Phys 10:1–21CrossRefGoogle Scholar
  53. Wertz A, Borst A, Haag J (2008) Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the fly. J Neurosci 28:3131–3140PubMedCrossRefGoogle Scholar
  54. Wertz A, Gaub B, Plett J et al (2009) Robust coding of ego-motion in descending neurons of the fly. J Neurosci 29:14993–15000PubMedCrossRefGoogle Scholar
  55. Wertz A, Haag J, Borst A (2012) Integration of binocular optic flow in cervical neck motor neurons of the fly. J Comp Physiol A 198:655–668CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, and Institute of Clinical Neuroanatomy, Goethe UniversityFrankfurt/MainGermany