Skip to main content

Reduced Morphology Models

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Simplified conductance-based models

Definition

Reduced morphology models are simplified computational models obtained by collapsing the dendritic tree of a detailed neuron model, in such a way to preserve as much as possible the original membrane dynamics.

Detailed Description

Morphologically detailed neuron models are based on 3D anatomical cell reconstructions and describe how the spatial dendritic structure of a neuron together with the kinetic properties and distributions of ion channels and synaptic inputs contributes to the dynamics and functionality of a neuron. These compartmental neuron models are usually composed of hundreds of dendritic branches (Fig. 1) with nonlinear membrane properties.

Fig. 1
figure 1

Typical 3D reconstruction of a hippocampal CA1 pyramidal neuron (a) and of a Purkinje cell (b). Both reconstructions were downloaded from the public neuromorpho.org database (cell c70863 and e4cb2a2, respectively)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bianchi D et al (2012) On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. J Comput Neurosci 33(2):207–225

    Article  PubMed  Google Scholar 

  • Brown SA, Moraru II, Schaff JC, Loew LM (2011) Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling. J Comput Neurosci 31:385–400

    Article  PubMed Central  PubMed  Google Scholar 

  • Bush PC, Sejnowski TJ (1993) Reduced compartment models of neocortical pyramidal cells. J Neurosci Methods 46:159–166

    Article  CAS  PubMed  Google Scholar 

  • Clements JD (1986) Synaptic Transmission and Integration in Spinal Motoneurones. Ph.D. thesis, Australian National University, Canberra

    Google Scholar 

  • Clements J, Redman S (1989) Cable properties of cat spinal motoneurones measured by combining voltage clamp current clamp and intracellular staining. J Physiol Lond 409:63–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davison AP, Feng J, Brown D (2000) A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Res Bull 51:393–399

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A (2001) Simplified models of neocortical pyramidal cells preserving somatodendritic voltage attenuation. Neurocomputing 38:167–173

    Article  Google Scholar 

  • Destexhe A et al (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18(10):3574–3588

    CAS  PubMed  Google Scholar 

  • Evans JD (2000) Analysis of a multiple equivalent cylinder model with generalized taper. IMA J Math Med Biol 17:347

    Article  CAS  Google Scholar 

  • Evans JD (2005) Analytical solution of the cable equation with synaptic reversal potentials for passive neurons with tip-to-tip dendrodendritic coupling. Math Biosci 196:125–152

    Article  CAS  PubMed  Google Scholar 

  • Hendrickson EB, Edgerton JR, Jaeger D (2011) The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. J Comput Neurosci 30:301–321

    Article  PubMed Central  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellems A, Chaturantabut S, Sorensen D, Cox S (2010) Morphologically accurate reduced order modeling of spiking neurons. J Comput Neurosci 28:477–494

    Article  PubMed  Google Scholar 

  • Kellems A, Roos D, Xiao N, Cox S (2009) Low-dimensional, morphologically accurate models of subthreshold membrane potential. J Comput Neurosci 27:161–176

    Article  PubMed Central  PubMed  Google Scholar 

  • Marasco A, Limongiello A, Migliore M (2012) Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Sci Rep 2:928

    Article  PubMed Central  PubMed  Google Scholar 

  • Marasco A, Limongiello A, Migliore M (2013) Using Strahler’s analysis to reduce up to 200-fold the run time of realistic neuron models. Sci Rep 2:2934

    Google Scholar 

  • Migliore M, Hoffman DA, Magee JC, Johnston D (1999) Role of an A-type K+ conductance in the backpropagation of action potentials in the dendrites of hippocampal pyramidal neurons. J Comput Neurosci 7:5–15

    Article  CAS  PubMed  Google Scholar 

  • Ohme M, Schierwagen A (1998) An equivalent cable model for neuronal trees with active membrane. Biol Cybern 78:227–243

    Article  CAS  PubMed  Google Scholar 

  • Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39–60

    Article  CAS  PubMed  Google Scholar 

  • Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    Article  CAS  PubMed  Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss RF (ed) Neural theory and modeling. Stanford University Press, Stanford, pp 73–97

    Google Scholar 

  • Rall W, Segev I, Rinzel J, Shepherd GM (eds) (1995) The theoretical foundation of dendritic function. MITPress, Cambridge

    Google Scholar 

  • Rinzel J, Rall W (1974) Transient response in a dendritic neuronal model for current injected at one branch. Biophys J 14:759–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schierwagen AK (1994) Exploring the computational capabilities of single neurons by continuous cable modelling. In: van Pelt J, Corner MA, Uylings HBM, Lopes da Silva FH (eds) The self-organizing brain from growth cones to functional networks, vol 102, Progress in brain research. Elsevier, Amsterdam, pp 151–167

    Chapter  Google Scholar 

  • Stratford K, Mason A, Larkman A, Major G, Jack JJB (1989) The modeling of pyramidal neurones in the visual cortex. In: Durbin R, Miall C, Mitchison G (eds) The computing neuron. Addison-Wesley, Workingham

    Google Scholar 

  • Tobin AE, Van Hooser SD, Calabrese RL (2006) Creation and reduction of a morphologically detailed model of a leech heart interneuron. J Neurophys 96:2107–2120

    Article  Google Scholar 

  • Traub R, Wong R, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-damp data on intrinsic conductances. J Neurophysiol 66:635–649

    CAS  PubMed  Google Scholar 

Further Reading

  • Migliore M, Shepherd GM (2005) Opinion: an integrated approach to classifying neuronal phenotypes. Nat Rev Neurosci 6:810–818

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addolorata Marasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Marasco, A., Migliore, M. (2014). Reduced Morphology Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_245-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_245-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics