Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Peripheral Nerve Interface, Epineural Electrode

  • Lee E. Fisher
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_210-1



Epineural electrodes are neural interface devices that are placed on or around peripheral nerves. They include one or more electrical contacts that can be used to stimulate or record action potentials from those nerves. These devices are not designed to penetrate through the perineurium and therefore tend to provide macroscale, rather than microscale, interfaces with the nerve. Because the perineurium remains intact and the electrode contacts are relatively large, the interface tends to be stable over time and less sensitive to micromotion and encapsulation than a microelectrode interface. The size and epineural nature of these electrodes often result in a lower degree of selectivity, both for stimulation and recording, than can be achieved via a penetrating microelectrode interface.

Detailed Description

Epineural electrodes are devices designed to be placed on or wrapped around peripheral nerves to provide an interface for electrical...


Spinal Cord Injury Sciatic Nerve Spinal Root Record Action Potential Knee Extension Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Altman KW, Plonsey R (1988) Development of a model for point source electrical fibre bundle stimulation. Med Biol Eng Comput 26(5):466–475PubMedCrossRefGoogle Scholar
  2. Amar AP, Levy ML, Liu CY, Apuzzo MLJ (2008) Vagus nerve stimulation. Proc IEEE 96(7):1142–1151CrossRefGoogle Scholar
  3. Brindley GS (1977) An implant to empty the bladder or close the urethra. J Neurol Neurosurg Psychiatry 40(4):358–369PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brindley GS (1994) The first 500 patients with sacral anterior root stimulator implants: general description. Paraplegia 32(12):795–805PubMedCrossRefGoogle Scholar
  5. Calvetti D, Wodlinger B, Durand DM, Somersalo E (2011) Hierarchical beamformer and cross-talk reduction in electroneurography. J Neural Eng 8(5):056002PubMedCentralPubMedCrossRefGoogle Scholar
  6. Cyberonics (2013) VNS therapy: issue overview. [Online]. Available: http://www.cyberonics.com/sites/default/files/Issue-Overview-FINAL-2013.pdf. Accessed 8 Jul 2013
  7. Dubkin C (1970) A constant-contact stimulating electrode for nerves. J Appl Physiol 28(3):350PubMedGoogle Scholar
  8. Fisher LE, Miller ME, Bailey SN, Davis JA, Anderson JS, Rhode L, Tyler DJ, Triolo RJ (2008) Standing after spinal cord injury with four-contact nerve-cuff electrodes for quadriceps stimulation. IEEE Trans Neural Syst Rehabil Eng 16(5):473–478PubMedCentralPubMedCrossRefGoogle Scholar
  9. Fisher LE, Tyler DJ, Anderson JS, Triolo RJ (2009) Chronic stability and selectivity of four-contact spiral nerve-cuff electrodes in stimulating the human femoral nerve. J Neural Eng 6(4):046010PubMedCentralPubMedCrossRefGoogle Scholar
  10. Fisher LE, Tyler DJ, Triolo RJ (2013) Optimization of selective stimulation parameters for multi-contact electrodes. J NeuroEng Rehabil 10(1):25PubMedCentralPubMedCrossRefGoogle Scholar
  11. Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29(24–25):3393–3399PubMedCrossRefGoogle Scholar
  12. Hansen M, Haugland MK, Sepulveda F (2003) Feasibility of using peroneal nerve recordings for deriving stimulation timing in a foot drop correction system. Neuromodulation 6(1):68–77PubMedCrossRefGoogle Scholar
  13. Hoffer JA, Loeb GE, Marks WB, O’Donovan MJ, Pratt CA, Sugano N (1987) Cat hindlimb motoneurons during locomotion. I. Destination, axonal conduction velocity, and recruitment threshold. J Neurophysiol 57(2):510–529PubMedGoogle Scholar
  14. Hoffer JA, Stein RB, Haugland MK, Sinkjaer T, Durfee WK, Schwartz AB, Loeb GE, Kantor C (1996) Neural signals for command control and feedback in functional neuromuscular stimulation: a review. J Rehabil Res Dev 33(2):145–157PubMedGoogle Scholar
  15. Koole P, Holsheimer J, Struijk JJ, Verloop AJ (1997) Recruitment characteristics of nerve fascicles stimulated by a multigroove electrode. IEEE Trans Rehabil Eng 5(1):40–50PubMedCrossRefGoogle Scholar
  16. Leventhal DK, Durand DM (2003) Subfascicle stimulation selectivity with the flat interface nerve electrode. Ann Biomed Eng 31(6):643–652PubMedCrossRefGoogle Scholar
  17. Martens FMJ, Heesakkers JPFA (2011) Clinical results of a brindley procedure: sacral anterior root stimulation in combination with a rhizotomy of the dorsal roots. Adv Urol 2011:709708PubMedCentralPubMedCrossRefGoogle Scholar
  18. Naples GG, Mortimer JT, Scheiner A, Sweeney JD (1988) A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans Biomed Eng 35(11):905–916PubMedCrossRefGoogle Scholar
  19. Polasek KH, Hoyen HA, Keith MW, Tyler DJ (2007) Human nerve stimulation thresholds and selectivity using a multi-contact nerve cuff electrode. IEEE Trans Neural Syst Rehabil Eng 15(1):76–82PubMedCrossRefGoogle Scholar
  20. Polasek KH, Hoyen HA, Keith MW, Kirsch RF, Tyler DJ (2009) Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng 17(5):428–437PubMedCentralPubMedCrossRefGoogle Scholar
  21. Schiefer MA, Polasek KH, Triolo RJ, Pinault GCJ, Tyler DJ (2010) Selective stimulation of the human femoral nerve with a flat interface nerve electrode. J Neural Eng 7(2):26006PubMedCentralPubMedCrossRefGoogle Scholar
  22. Tyler DJ, Durand DM (1997) A slowly penetrating interfascicular nerve electrode for selective activation of peripheral nerves. IEEE Trans Rehabil Eng 5(1):51–61PubMedCrossRefGoogle Scholar
  23. Tyler DJ, Durand DM (2002) Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans Neural Syst Rehabil Eng 10(4):294–303PubMedCrossRefGoogle Scholar
  24. Veltink PH, van Veen BK, Struijk JJ, Holsheimer J, Boom HB (1989) A modeling study of nerve fascicle stimulation. IEEE Trans Biomed Eng 36(7):683–692PubMedCrossRefGoogle Scholar
  25. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813(1):181–186PubMedCrossRefGoogle Scholar
  26. Wodlinger B, Durand DM (2009) Localization and recovery of peripheral neural sources with beamforming algorithms. IEEE Trans Neural Syst Rehabil Eng 17(5):461–468PubMedCentralPubMedCrossRefGoogle Scholar
  27. Wodlinger B, Durand DM (2011) Selective recovery of fascicular activity in peripheral nerves. J Neural Eng 8(5):056005PubMedCentralPubMedCrossRefGoogle Scholar
  28. Yoo PB, Durand DM (2005) Selective recording of the canine hypoglossal nerve using a multicontact flat interface nerve electrode. IEEE Trans Biomed Eng 52(8):1461–1469PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghUSA