Skip to main content

Markov Models of Ion Channels

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 423 Accesses

Synonyms

Kinetic schemes; Markov chains

Definition

A Markov model is a simplified phenomenological representation of (bio)physical, chemical, or biological process dynamics, described quantitatively as a set of discrete states and by the ease of transition through time from one state to another.

In chemistry, for instance, a complex reaction can be represented as a kinetic scheme, although ultimately it occurs from the rearrangement of electrons in the bonds between atoms, according to the laws of quantum physics. Nonetheless, for most practical purposes, the changes of the reactants’ concentration and their equilibria can be effectively predicted by a reduced kinetic description, involving simple concepts such as affinity, valence, and reaction rates.

In the context of modeling the ionic permeability of a protein channel and the activation of a (synaptic) membrane receptor, of a transporter, of a second messenger, or of the activity-dependent short-term synaptic plasticity (Destexhe...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Chow C, White J (1996) Spontaneous action potentials due to channel fluctuations. Biophys J 71:3013–3021

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clay J, DeFelice L (1983) Relationship between membrane excitability and single channel open-close kinetics. Biophys J 42:151–157

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Colquhoun D, Hawkes A (2009a) The principles of the stochastic interpretation of ion-channel mechanisms. In: Sakmann B, Neher E (eds) Single-channel recording, chapter 18, 2nd edn. Springer, New York, pp 397–482

    Google Scholar 

  • Colquhoun D, Hawkes A (2009b) A q-matrix cookbook. In: Sakmann B, Neher E (eds) Single-channel recording, chapter 20, 2nd edn. Springer, New York

    Google Scholar 

  • Colquhoun D, Sigworth F (2009) Fitting and statistical analysis of single-channel records. In: Sakmann B, Neher E (eds) Single-channel recording, chapter 19, 2nd edn. Springer, New York, pp 483–586

    Google Scholar 

  • Conti F, Wanke E (1975) Channel noise in nerve membranes and lipid bilayers. Q Rev Biophys 8:451–506

    Article  PubMed  CAS  Google Scholar 

  • Cox D, Miller H (1965) The theory of stochastic processes. Chapman and Hall, London

    Google Scholar 

  • Destexhe A, Mainen Z, Sejnowski T (1998) Kinetic models of synaptic transmission. In: Segev I, Koch C (eds) Methods in neuronal modeling, chapter 1, 2nd edn. MIT Press, Cambridge, pp 1–25

    Google Scholar 

  • Fox R (1997) Stochastic versions of the Hodgkin-Huxley equations. Biophys J 72:2068–2074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fox RF, Yn L (1994) Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys Rev E 49:3421–3431

    Article  CAS  Google Scholar 

  • Gillespie D (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  • Goldwin J, Shea-Brown E (2011) The what and where of adding channel noise to the Hodgkin-Huxley equations. PLoS Comput Biol 7:e1002247

    Article  CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol Lond 117:500–544

    PubMed Central  PubMed  CAS  Google Scholar 

  • Johnston D, Wu SMS (1994) Foundations of cellular neurophysiology. MIT Press, Cambridge

    Google Scholar 

  • Khaliq Z, Gouwens N, Raman I (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899–4912

    PubMed  CAS  Google Scholar 

  • Liebovitch LS, TÏŒth TI (1990) Using fractals to understand the opening and closing of ion channels. Ann Biomed Eng 18:177–194

    Article  PubMed  CAS  Google Scholar 

  • Linaro D, Storace M, Giugliano M (2011) Accurate and fast simulation of channel noise in conductance-based model neurons by diffusion approximation. PLoS Comput Biol 7:e1001102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marx S, Gaburjakova J, Gaburgjakova M, Henrikson C, Ondrias K, Marks AR (2001) Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 88:1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Menon V, Spruston N, Kath WL (2009) A state-mutating genetic algorithm to design ion-channel models. Proc Natl Acad Sci U S A 106:16829–16834

    Article  PubMed Central  PubMed  Google Scholar 

  • Milescu LS, Yamanishi T, Ptak K, Mogri MZ, Smith JC (2008) Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp. Biophys J 95:66–87

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mino H, Rubinstein JT, White JA (2002) Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Ann Biomed Eng 30:578–587

    Article  PubMed  Google Scholar 

  • Naundorf B, Wolf F, Volgushev M (2006) Unique features of action potential initiation in cortical neurons. Nature 440:1060–1063

    Article  PubMed  CAS  Google Scholar 

  • Papoulis A, Pillail SU (2002) Probability, random variables, and stochastic processes, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Press W, Teukolsky S, Vetterling W, Flannery B (2007) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Raman IM, Bean BP (2001) Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys J 80:729–737

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Skaugen E, Walløe L (1979) Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol Scand 107:343–363

    Article  PubMed  CAS  Google Scholar 

  • Sterrat D, Graham B, Gillies A, Willshaw D (2011) Principles of computational modelling in neuroscience. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Tsodyks M, Pawelzik K, Markram H (1998) Neural networks with dynamic synapses. Neural Comput 10:821–835

    Article  PubMed  CAS  Google Scholar 

  • Undrovinas A, Fleidervish I, Makielski J (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Yamada W, Koch C, Adams P (1998) Multiple channels and calcium dynamics. In: Segev I, Koch C (eds) Methods in neuronal modeling, chapter 4. MIT Press, Cambridge, pp 137–170

    Google Scholar 

  • Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J Neurosci Off J Soc Neurosci 28:7260–7272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Giugliano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Linaro, D., Giugliano, M. (2014). Markov Models of Ion Channels. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_131-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_131-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics