Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Neuromorphic Sensors, Olfaction

  • Elisabetta Chicca
  • Michael Schmuker
  • Martin Nawrot
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_119-2


Neuromorphic olfaction is an emergent field of research which aims at unraveling computational principles of biological olfactory systems and translating them into algorithms and devices. The resulting technology has high potential for a wide range of practical applications (detection of chemical species, diagnosis, crime prevention and security, etc.) as well as a tool for basic research to verify hypotheses about the sense of smell in biological systems. Neuromorphic olfactory systems are composed of a sensing part which provides selective responses to particular chemical as input to a biologically inspired computational stage.

Detailed Description

Most animals rely on smell as sensory modality for survival and reproduction: it allows them to detect predator, food, and mates. The biological olfactory system is an ideal model for the study of information processing in biological neural networks. Furthermore, knowledge about animal olfaction could be used to improve...


Lateral Inhibition Olfactory Receptor Olfactory System Antennal Lobe Spike Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Arshak K, Moore E, Lyons G, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sens Rev 24(2):181–198CrossRefGoogle Scholar
  2. Beyeler M, Stefanini F, Proske H, Galizia G, Chicca E (2010) Exploring olfactory sensory networks: simulations and hardware emulation. In: Biomedical Circuits and Systems Conference BIOCAS 2010, IEEE, pp 270–273. doi:10.1109/BIOCAS.2010.5709623. http://ncs.ethz.ch/pubs/pdf/Beyeler_etal10.pdf
  3. Du L, Wu C, Liu Q, Huang L, Wang P (2012) Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron 42C:570–580Google Scholar
  4. Hamana H, Shou-xin L, Breuils L, Hirono J, Sato T (2010) Heterologous functional expression system for odorant receptors. J Neurosci Methods 185(2):213–220. doi:10.1016/j.jneumeth.2009.09.024. http://www.ncbi.nlm.nih.gov/pubmed/19799933 PubMedCrossRefGoogle Scholar
  5. Hou Y, Helali S, Zhang A, Jaffrezic-Renault N, Martelet C, Minic J, Gorojankina T, Persuy MA, Pajot-Augy E, Salesse R et al (2006) Immobilization of rhodopsin on a self-assembled multilayer and its specific detection by electrochemical impedance spectroscopy. Biosens Bioelectron 21(7):1393–1402. doi:10.1016/j.bios.2005.06.002. http://www.ncbi.nlm.nih.gov/pubmed/16043336 PubMedCrossRefGoogle Scholar
  6. Hsieh HY, Tang KT (2012) Vlsi implementation of a bio-inspired olfactory spiking neural network. Neural Netw Learn Syst IEEE Trans 23(7):1065–1073CrossRefGoogle Scholar
  7. Imam N, Cleland TA, Manohar R, Merolla PA, Arthur JV, Akopyan F, Modha DS (2012) Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core. Front Neurosci 6:83PubMedCentralPubMedCrossRefGoogle Scholar
  8. Kaiser L, Graveland-Bikker J, Steuerwald D, Vanberghem M, Herlihy K, Zhang S (2008) Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses. Proc Natl Acad Sci U S A 105(41):15,726–15,731. doi:10.1073/pnas.0804766105. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2572932&tool=pmcentrez&rendertype=abstract CrossRefGoogle Scholar
  9. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23(3):150–156. doi:10.1016/j.tibtech.2005.01.003. http://www.ncbi.nlm.nih.gov/pubmed/15734558 PubMedCrossRefGoogle Scholar
  10. Koickal TJ, Hamilton A, Tan SL, Covington JA, Gardner JW, Pearce TC (2007) Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans Circuits Syst I 54(1):60–73. doi:10.1109/TCSI.2006.888677CrossRefGoogle Scholar
  11. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215PubMedCrossRefGoogle Scholar
  12. Ng KT, Boussaid F, Bermak A (2011) A cmos single-chip gas recognition circuit for metal oxide gas sensor arrays. Circuits Syst I Regul Pap IEEE Trans 58(7):1569–1580CrossRefGoogle Scholar
  13. Pearce TC, Karout S, Capurro A (2013) Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex. Front Neurosci 7:119PubMedCentralPubMedCrossRefGoogle Scholar
  14. Persaud KC (2013) Biomimetic olfactory sensors. IEEE Sensors J 12(11):3108–3112CrossRefGoogle Scholar
  15. Pfeil T, Grbl A, Jeltsch S, Mller E, Mller P, Petrovici MA, Schmuker M, Brderle D, Schemmel J, Meier K (2013) Six networks on a universal neuromorphic computing substrate. Front Neurosci 7(11). doi:10.3389/fnins.2013.00011. http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract
  16. Sankaran S, Panigrahi S, Mallik S (2011a) Odorant binding protein based biomimetic sensors for detection of alcohols associated with salmonella contamination in packaged beef. Biosens Bioelectron 26(7):3103–3109. doi:10.1016/j.bios.2010.07.122. http://www.ncbi.nlm.nih.gov/pubmed/21227678 PubMedCrossRefGoogle Scholar
  17. Sankaran S, Panigrahi S, Mallik S (2011b) Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sensors Actuators B Chem 155(1):818. doi:10.1016/j.snb.2010.08.003. http://linkinghub.elsevier.com/retrieve/pii/S0925400510006647 CrossRefGoogle Scholar
  18. Schmuker M, Schneider G (2007) Processing and classification of chemical data inspired by insect olfaction. Proc Natl Acad Sci 104(51):20,285–20,289. doi:10.1073/pnas.0705683104. http://www.pnas.org/content/104/51/20285.long CrossRefGoogle Scholar
  19. Schmuker M, Pfeil T, Nawrot MP (2014) A neuromorphic network for generic multivariate data classification. Proc Natl Acad Sci 111(6):2081–2086Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Elisabetta Chicca
    • 1
  • Michael Schmuker
    • 2
  • Martin Nawrot
    • 2
  1. 1.Cognitive Interaction Technology – Center of ExcellenceBielefeld UniversityBielefeldGermany
  2. 2.Neuroinformatik/Theoretische Neurobiologie, Institut für BiologieFreie Universität BerlinBerlinGermany