Skip to main content

Path-Based and Whole-Network Measures

  • Living reference work entry
  • First Online:
Encyclopedia of Social Network Analysis and Mining

Synonyms

Centrality measures; Structural and locational properties

Glossary

Betweenness centrality:

A measure of the proportion of shortest paths in a network passing through a specific node or edge.

Closeness centrality:

A measure of how close a node is to all the other nodes of a network.

Clustering coefficient:

A measure of how much nodes tend to form groups in a network.

Diameter:

The maximum distance between two nodes.

Direct connection:

An edge between two nodes, usually indicating the existence of a specific relationship, e.g., a friendship between two individuals.

Dyad:

A group of two people.

Geodesic distance (or distance):

Length of one of the shortest paths between two nodes.

Indirect connection:

A path between two nodes that are not directly connected through an edge.

Node:

An entity in a network, usually representing an individual.

Path:

A sequence of edges sharing common endpoints. e.g., an edge between n i and n j followed by an edge between n j and n ...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexanderson GL (2006) About the cover: Euler and Königsberg’s bridges: a historical view. Bull Am Math Soc 43:567–573. doi:10.1090/S0273-0979-06-01130-X

    Article  MATH  Google Scholar 

  • Anthonisse JM (1971) The rush in a directed graph. Technical report BN 9/71, Stichting Mathematisch Centrum, Amsterdam

    Google Scholar 

  • Bacon Oracle (2016) The Oracle of Bacon. https://oracleofbacon.org/. Accessed 11 Nov 2016

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

  • Bearman PS, Moody J, Stovel K (2004) Chains of affection: the structure of adolescent romantic and sexual networks. Am J Sociol 110(1):44–91. doi:10.1086/386272

    Article  Google Scholar 

  • Becchetti L, Boldi P, Castillo C, Gionis A (2008) Efficient semi-streaming algorithms for local triangle counting in massive graphs. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ‘08. ACM, New York, pp 16–24. doi:10.1145/1401890.1401898

    Google Scholar 

  • Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177. doi:10.1080/0022250X.2001.9990249

    Article  MATH  Google Scholar 

  • Brandes U, Pich C (2007) Centrality estimation in large networks. Int J Bifurcation Chaos 17(07):2303–2318. doi:10.1142/S0218127407018403

    Article  MathSciNet  MATH  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Costa LF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242. doi:10.1080/00018730601170527

    Article  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695. http://igraph.org/

  • Erdős Number Project (2006) The Erdős number project at Oakland University. https://oakland.edu/enp/. Accessed 26 Nov 2016

  • Festa P (2006) Shortest path algorithms. In: Resende MGC, Pardalos PM (eds) Handbook of optimization in telecommunications. Springer, New York, pp 185–210. doi:10.1007/978-0-387-30165-5_8

    Chapter  Google Scholar 

  • Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345. doi:10.1145/367766.368168

    Article  Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174. doi:10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  • Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35–41. doi:10.2307/3033543

    Article  Google Scholar 

  • Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Networks 1(3):215–239. doi:10.1016/0378-8733(78)90021-7

    Article  Google Scholar 

  • Goncalves B, Perra N, Vespignani A (2011) Modeling users’ activity on twitter networks: validation of Dunbar’s number. PLoS ONE 6(8):e22656. doi:10.1371/journal.pone.0022656

    Article  Google Scholar 

  • Guha S, McGregor A (2012) Graph synopses, sketches, and streams: a survey. Proc VLDB Endow 5(12):2030–2031. doi:10.14778/2367502.2367570

    Article  Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Harary F, Norman RZ (1953) Graph theory as a mathematical model in the social sciences. Institute for Social Research, University of Michigan, Ann Arbor

    Google Scholar 

  • Johnson DB (1977) Efficient algorithms for shortest paths in sparse networks. J ACM 24(1):1–13. doi:10.1145/321992.321993

    Article  MathSciNet  MATH  Google Scholar 

  • Lambertini M, Magnani M, Marzolla M, Montesi D, Paolino C (2014) Large-scale social network analysis. In: Gkoulalas-Divanis A, Labbi A (eds) Large-scale data analytics. Springer, New York, pp 155–187. doi:10.1007/978-1-4614-9242-9 6

    Chapter  Google Scholar 

  • Latapy M (2008) Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor Comput Sci 407(1):458–473. doi:10.1016/j.tcs.2008.07.017

    Article  MathSciNet  MATH  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198,701. doi:10.1103/PhysRevLett.87.198701

    Article  Google Scholar 

  • Latora V, Marchiori M (2004) How the science of complex networks can help developing strategies against terrorism. Chaos, Solitons Fractals 20(1):69–75. doi:10.1016/S0960-0779(03) 00429-6

    Article  MATH  Google Scholar 

  • Leskoveč J, Sosiˇč R (2016) Snap: a general-purpose network analysis and graph-mining library. ACM Trans Intell Syst Technol 8(1):20. doi:10.1145/2898361

    Google Scholar 

  • Luce R, Perry A (1949) A method of matrix analysis of group structure. Psychometrika 14:95–116. doi:10.1007/BF02289146

    Article  MathSciNet  Google Scholar 

  • Lumsdaine A, Gregor D, Hendrickson B, Berry JW (2007) Challenges in parallel graph processing. Parallel Process Lett 17(1):5–20. doi:10.1142/S0129626407002843

    Article  MathSciNet  Google Scholar 

  • Lusseau D (2003) The emergent properties of a dolphin social network. Proc R Soc Lond B Biol Sci 270(Suppl 2):S186–S188. doi:10.1098/rsbl.2003.0057

    Article  Google Scholar 

  • McCormick TH, Salganik MJ, Zheng T (2010) How many people do you know?: efficiently estimating personal network size. J Am Stat Assoc 105(489):59–70. doi:10.1198/jasa.2009.ap08518

    Article  MathSciNet  MATH  Google Scholar 

  • Moreno JL (1934) Who shall survive? A new approach to the problem of human Interrelations. Nervous and Mental Disease Publishing Co., Washington, DC

    Book  Google Scholar 

  • Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci U S A 98(2):404–409. doi:10.1073/pnas.98.2.404

    Article  MathSciNet  MATH  Google Scholar 

  • Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Networks 27(1):39–54. doi:10.1016/j.socnet.2004.11.009

    Article  MathSciNet  Google Scholar 

  • Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • NodeXL (2012) Nodexl, a graph visualization and manipulation software. http://nodexl.codeplex.com. Accessed 6 Dec 2016

  • Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Soc Networks 31(2):155–163. doi:10.1016/j.socnet.2009.02.002

    Article  Google Scholar 

  • Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Soc Networks 32(3):245–251. doi:10.1016/j.socnet.2010.03.006

    Article  Google Scholar 

  • Peay ER (1980) Connectedness in a general model for valued networks. Soc Networks 2(4):385–410. doi:10.1016/0378-8733(80)90005-2

    Article  MathSciNet  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. ISBN:3-900051-07-0

  • Rossi L, Magnani M (2012) Conversation practices and network structure in twitter. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM12/paper/view/4634

  • Sabidussi G (1966) The centrality index of a graph. Psychometrika 31(4):581–603. doi:10.1007/ BF02289527

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Davidson A, Pan Y, Wu Y, Riffel A, Owens JD (2016) Gunrock: a high-performance graph processing library on the GPU. In: Proceedings of 21st ACM SIGPLAN symposium on principles and practice of parallel programming, PPoPP ‘16. ACM, New York, pp 11:1–11:12. doi:10.1145/2851141.2851145

    Google Scholar 

  • Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442. doi:10.1038/30918

    Article  Google Scholar 

  • White DR, Borgatti SP (1994) Betweenness centrality measures for directed graphs. Soc Networks 16(4):335–346. doi:10.1016/0378-8733(94)90015-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Magnani .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Magnani, M., Marzolla, M. (2016). Path-Based and Whole-Network Measures. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7163-9_241-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7163-9_241-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7163-9

  • Online ISBN: 978-1-4614-7163-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics