Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Benchmarking for Graph Clustering and Partitioning

  • David A. Bader
  • Andrea Kappes
  • Henning Meyerhenke
  • Peter Sanders
  • Christian Schulz
  • Dorothea Wagner
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7163-9_23-1




Performance evaluation for comparison to the state of the art.

Benchmark suite

Set of instances used for benchmarking.


Benchmarking refers to a repeatable performance evaluation as a means to compare somebody’s work to the state of the art in the respective field. As an example, benchmarking can compare the computing performance of new and old hardware.

In the context of computing, many different benchmarks of various sorts have been used. A prominent example is the Linpack benchmark of the TOP500 list of the fastest computers in the world, which measures the performance of the hardware by solving a dense linear algebra problem. Different categories of benchmarks include sequential versus parallel, microbenchmark versus application, or fixed code versus informal problem description. See, e.g., (Weicker 2002) for a more detailed treatment of hardware evaluation.

When it comes to...

This is a preview of subscription content, log in to check access



The authors would like to thank all contributors to the 10th DIMACS Implementation Challenge graph collection. Tim Davis provided valuable guidelines for preprocessing the data. Financial support by the sponsors DIMACS, the Command, Control, and Interoperability Center for Advanced Data Analysis (CCICADA), Pacific Northwest National Laboratory, Sandia National Laboratories, Intel Corporation, and Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.


  1. Aiello W, Chung F, Lu L (2001) A random graph model for power law graphs. Exp Math 10(1):53–66MathSciNetCrossRefMATHGoogle Scholar
  2. Alam M, Khan M (2017) Parallel algorithms for generating random networks with given degree sequences. Int J Parallel Prog 45(1):109–127CrossRefGoogle Scholar
  3. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47MathSciNetCrossRefMATHGoogle Scholar
  4. Aloise D, Caporossi G, Perron S, Hansen P, Liberti L, Ruiz M (2012) Modularity maximization in networks by variable neighborhood search. In: Proceedings of graph partitioning and graph clustering, 10th DIMACS implementation challenge workshop, 2012. Contemporary mathematics, vol 588. American Mathematical SocietyGoogle Scholar
  5. Arenas A. Network data sets. http://deim.urv.cat/~aarenas/data/welcome.htm. Online. Accessed 28 Sept 2012
  6. Bader DA, Berry J, Kahan S, Murphy R, Jason Riedy E, Will-cock J (2010) Graph 500 benchmark 1 (“search”), version 1.1. Technical report, Graph 500Google Scholar
  7. Bader D, Meyerhenke H, Sanders P, Wagner D (2012) 10th DIMACS implementation challenge. http://www.cc.gatech.edu/dimacs10/. Online. Accessed 17 Apr 2016
  8. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512MathSciNetCrossRefMATHGoogle Scholar
  9. Bauer R, Delling D, Sanders P, Schieferdecker D, Schultes D, Wagner D (2010) Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. ACM J Exp Algorithmics 152.3:2.1–2.3:2.31Google Scholar
  10. Berry JW, Hendrickson B, LaViolette RA, Phillips CA (2011) Tolerating the community detection resolution limit with edge weighting. Phys Rev E 83:056119CrossRefGoogle Scholar
  11. Bollobás B (1985) Random graphs. Academic Press, LondonMATHGoogle Scholar
  12. Çatalyürek ÜV, Aykanat C (1996) Decomposing irregularly sparse matrices for parallel matrix-vector multiplication. In: Ferreira A, Rolim J, Saad Y, Yang T (eds) Parallel algorithms for irregularly structured problems. Lecture notes in computer science, vol 1117. Springer, Berlin/Heidelberg, pp 75–86. doi: 10.1007/BFb0030098
  13. Çatalyürek ÜV, Kaya K, Langguth J, Ucar B (2012) A divisive clustering technique for maximizing the modularity. In: Proceedings of graph partitioning and graph clustering, 10th DIMACS implementation challenge workshop, 2012. Contemporary mathematics, vol 588. American Mathematical SocietyGoogle Scholar
  14. Chakrabarti D, Zhan Y, Faloutsos C (2004) R-MAT: A recursive model for graph mining. In: Proceedings of the 4th SIAM international conference on Data Mining (SDM), Orlando. SIAMGoogle Scholar
  15. Davis T (2016) The University of Florida Sparse Matrix Collection. http://www.cise.ufl.edu/ research/sparse/matrices. Online. Accessed 17 Apr2016
  16. van Dongen SM (2000) Graph clustering by flow simulation. PhD thesis, University of UtrechtGoogle Scholar
  17. Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the internet and WWW. Oxford University Press, OxfordGoogle Scholar
  18. Fagginger Auer BO, Bisseling RH (2012) Graph coarsening and clustering on the GPU. In: Proceedings of graph partitioning and graph clustering, 10th DIMACS implementation challenge workshop, 2012. Contemporary mathematics, vol 588. American Mathematical SocietyGoogle Scholar
  19. Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci 104:36–41CrossRefGoogle Scholar
  20. Gilbert H (1959) Random graphs. Ann Math Stat 30(4):1141–1144MathSciNetCrossRefMATHGoogle Scholar
  21. Good BH, de Montjoye Y-A, Clauset A (2010) Performance of modularity maximization in practical contexts. Phys Rev E 81:046106MathSciNetCrossRefGoogle Scholar
  22. Holtgrewe M, Sanders P, Schulz C (2010) Engineering a Scalable High Quality Graph Partitioner. In: 24th IEEE international parallal and distributed processing symposium, 2010Google Scholar
  23. Kannan R, Vempala S, Vetta A (2004) On clusterings: good, bad, spectral. J ACM 51(3):497–515MathSciNetCrossRefMATHGoogle Scholar
  24. Karypis G, Kumar V (1999) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20:359–392MathSciNetCrossRefMATHGoogle Scholar
  25. Kolda TG, Pinar A, Plantenga T, Seshadhri C (2013) A scalable generative graph model with community structure. arXiv preprint arXiv:1302.6636Google Scholar
  26. Krioukov D, Papadopoulos F, Kitsak M, Vahdat A, Boguna M (2010) Hyperbolic geometry of complex networks. Phys Rev E 82(3):036106MathSciNetCrossRefGoogle Scholar
  27. Kunegis J (2013) KONECT: the koblenz network collection. In: Carr L, Laen-der AHF, Lóscio BF, King I, Fontoura M, Vrandecic D, Aroyo L, de Oliveira JPM, Lima F, Wilde E (eds) 22nd International World Wide Web conference, WWW ‘13, Rio de Janeiro 13–17 May 2013, Companion Volume, pp 1343–1350. International World Wide Web Conferences Steering Committee/ACMGoogle Scholar
  28. Lambiotte R (2010) Multi-scale modularity in complex networks. In: 8th International symposium on modeling and optimization in mobile, ad-hoc and wireless networks (WiOpt 2010), 31 May–4 June. University of Avignon, Avignon, pp 546–553. IEEEGoogle Scholar
  29. Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E 80(5)Google Scholar
  30. Lancichinetti A, Fortunato S (2011) Limits of modularity maximization in community detection. Phys Rev E 84:066122CrossRefGoogle Scholar
  31. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78(4):046110CrossRefGoogle Scholar
  32. LaSalle D, Karypis G (2015) Multi-threaded modularity based graph clustering using the multilevel paradigm. J Parallel Distrib Comput 76:66–80CrossRefGoogle Scholar
  33. Leskovec J. Stanford Network Analysis Package (SNAP). http://snap.stanford.edu/index.html. Online. Accessed 17 Apr 2016
  34. von Looz M, Meyerhenke H, Prutkin R (2015) Generating random hyperbolic graphs in subquadratic time. In: Elbassioni KM, Makino K (eds) Algorithms and computation – 26th international symposium, ISAAC 2015, Nagoya 9–11 Dec 2015, Proceedings. Lecture notes in computer science, vol 9472. Springer, pp 467–478Google Scholar
  35. Meyer U, Penschuck M (2016) Generating massive scale-free networks under resource constraints. In: Goodrich MT, Mitzenmacher M (eds) Proceedings of the eighteenth workshop on algorithm engineering and experiments, ALENEX 2016, Arlington, pp 39–52. SIAM 2016Google Scholar
  36. Newman M. Network data. http://www-personal.umich.edu/~mejn/netdata/. Online. Accessed 28 Sept 2012
  37. Ovelgönne M, Geyer-Schulz A (2012) An ensemble learning strategy for graph clustering. In: Proceedings of graph partitioning and graph clustering, 10th DIMACS implementation challenge workshop, 2012. Contemporary mathematics, vol 588. American Mathematical SocietyGoogle Scholar
  38. Riedy EJ, Meyerhenke H, Ediger D, Bader DA (2012) Parallel community detection for massive graphs. In: Proceedings of graph partitioning and graph clustering, 10th DIMACS implementation challenge workshop, 2012. Contemporary mathematics, vol 588. American Mathematical SocietyGoogle Scholar
  39. Sanders P, Schulz C (2016) Scalable generation of scale-free graphs. Inform Process Lett 116(7):489–491MathSciNetCrossRefMATHGoogle Scholar
  40. Seshadhri C, Kolda TG, Pinar A (2012) Community structure and scale-free collections of Erdős-Rényi graphs. Phys Rev E 85(5)Google Scholar
  41. Soper AJ, Walshaw C, Cross M (2004) A combined evolutionary search and multilevel optimisation approach to graph-partitioning. J Glob Optim 29(2):225–241MathSciNetCrossRefMATHGoogle Scholar
  42. Staudt CL, Meyerhenke H (2016) Engineering parallel algorithms for community detection in massive networks. IEEE Trans Parallel Distrib Syst 27(1):171–184CrossRefGoogle Scholar
  43. Staudt C, Sazonovs A, Meyerhenke H (2015) Networkit: A tool suite for large-scale complex network analysis. CoRR, abs/1403.3005Google Scholar
  44. Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442CrossRefGoogle Scholar
  45. Weicker R (2002) Benchmarking. In: Calzarossa M, Tucci S (eds) Performance evaluation of complex systems: techniques and tools, Lecture notes in computer science, vol 2459. Springer, Berlin/Heidelberg, pp 231–242Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • David A. Bader
    • 1
  • Andrea Kappes
    • 2
  • Henning Meyerhenke
    • 2
  • Peter Sanders
    • 2
  • Christian Schulz
    • 2
  • Dorothea Wagner
    • 2
  1. 1.School of Computational Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institute of Theoretical InformaticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany