Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Community Evolution

  • Stanisław SaganowskiEmail author
  • Piotr Bródka
  • Przemysław Kazienko
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7163-9_223-1




Social network


Temporal social network


Evolution of a particular social community can be represented as a sequence of events (changes) following each other in the successive timeframes within the temporal social network. In other words, the evolution is described by identified group transformations from time Ti to Ti+1 (i is the period index).

There are several approaches to definition of possible events in the social group evolution:
  • Asur et al. distinguish five possible events that may happen to groups, i.e., they may dissolve, form, continue, merge, and split (Asur et al. 2007).

  • Pala et al. identify six distinct transformations: growth, contraction, merging, splitting, birth, and death (Palla et al. 2007).

  • Bródka et al. in turn describe seven noticeable event types: continuing, shrinking, growing, splitting, merging, dissolving, and forming (Bródka et...


Social Network Community Evolution Community Detection Group Evolution Inclusion Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.



This work was partially supported by Wrocław University of Science and Technology statutory funds and the Polish National Science Centre, decisions no. 2013/09/B/ST6/02317.


  1. Asur S, Parthasarathy S, Ucar D (2007) An event-based framework for characterizing the evolutionary behavior of interaction graphs. KDD ’07 Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 913–921 San Jose, California, USA—August 12–15, 2007 ACM New York, NY, USA 2007Google Scholar
  2. Atzmueller M, Ernst A, Krebs F, Scholz C, Stumme G (2014) Formation and temporal evolution of social groups during coffee breaks. September 15th, 2014 - Nancy, France.Google Scholar
  3. Barabasi AL, Jeong H, Neda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A 311:590–614MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bródka P, Saganowski S, Kazienko P (2012a) GED: the method for group evolution discovery in social networks. Soc Netw Anal Min. doi:10.1007/s13278-012-0058-8Google Scholar
  5. Bródka P, Kazienko P, Kołoszczyk B (2012b) Predicting group evolution in the social network. In: Social informatics, Lecturer notes computer science. Springer, Berlin/HeidelbergGoogle Scholar
  6. Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. KDD '06 Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining Pages 554–560 Philadelphia, PA, USA — August 20–23, 2006 ACM New York, NY, USA ©2006Google Scholar
  7. Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the internet and WWW. Oxford University Press, OxfordCrossRefzbMATHGoogle Scholar
  8. Falkowski T, Bartelheimer J, Spiliopoulou M (2006) Mining and visualizing the evolution of subgroups in social networks. In: Proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence (WI ‘06)(Hong Kong, China 18–22 December 2006), pp 52–58Google Scholar
  9. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174MathSciNetCrossRefGoogle Scholar
  10. Ganti V, Gehrke J, Ramakrishnan R, Loh W-Y (2002) A framework for measuring differences in data characteristics. J Comput Syst Sci 64:542–578MathSciNetCrossRefzbMATHGoogle Scholar
  11. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99(12):7821–7826MathSciNetCrossRefzbMATHGoogle Scholar
  12. Granell C, Darst RK, Arenas A, Fortunato S, Gómez S (2015) Benchmark model to assess community structure in evolving networks. Phys Rev E 92(1):012805CrossRefGoogle Scholar
  13. Greene D, Doyle D, Cunningham P (2010) Tracking the evolution of communities in dynamic social networks. In: Proceedings of the international conferences on advances in social network analysis and mining (ASONOM) Odense, 9–11 August 2010), ACM, pp 176–183Google Scholar
  14. Kawadia V, Sreenivasan S (2012) Online detection of temporal communities in evolving networks by estrangement confinement, arXiv:1203.5126v1Google Scholar
  15. Kim MS, Han J (2009) A particle-and-density based evolutionary clustering method for dynamic networks. In: Proceedings of the VLDB‘09 Lyon, 24–28 Aug 2009. France endowment, ACM, pp 622–633Google Scholar
  16. Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social network. Science 311:88–90MathSciNetCrossRefzbMATHGoogle Scholar
  17. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:49MathSciNetCrossRefzbMATHGoogle Scholar
  18. Lin YR, Chi Y, Zhu S, Sundaram H, Tseng BL (2008) Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. WWW '08 Proceedings of the 17th international conference on World Wide Web Pages 685–694 Beijing, China — April 21–25, 2008 ACM New York, NY, USA ©2008Google Scholar
  19. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980):876–878MathSciNetCrossRefzbMATHGoogle Scholar
  20. Oliveira MCM, Gama J (2010) Bipartite graphs for monitoring clusters transitions. In: Proceedings of the 9th international conference on intelligent data analysis. Springer, Berlin, pp 114–124Google Scholar
  21. Palla G, Barabási AL, Vicsek T (2007) Quantifying social group evolution. Nature 446:664–667CrossRefGoogle Scholar
  22. Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818Google Scholar
  23. Saganowski S, Bródka P, Kazienko P (2012) Influence of the dynamic social network timeframe type and size on the group evolution discovery. In: Istanbul, Turkey 26–29 August 2012, IEEE Computer Society, pp 678–682Google Scholar
  24. Saganowski S, Gliwa B, Bródka P, Zygmunt A, Kazienko P, Koźlak J (2015) Predicting community evolution in social networks. Entropy 17(5):3053–3096CrossRefGoogle Scholar
  25. Sarkar P, Moore AW (2005) Dynamic social network analysis using latent space models. SIGKDD Explor Newsl 7:31–40CrossRefGoogle Scholar
  26. Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) Monic: modeling and monitoring cluster transitions. KDD '06 Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining Pages 706–711 Philadelphia, PA, USA — August 20–23, 2006 ACM New York, NY, USA ©2006Google Scholar
  27. Sun J, Papadimitriou S, Yu PS, Faloutsos C (2007) GraphScope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD international conferences on knowledge discovery and data mining (KDD). ACM, New York, pp 687–696CrossRefGoogle Scholar
  28. Tajeuna EG, Bouguessa M, Wang S (2015) Tracking the evolution of community structures in time-evolving social networks. In: Proceedings of the 2015 I.E. international conference on data science and advanced analytics (IEEE DSAA). IEEE, Piscataway, pp 1–10CrossRefGoogle Scholar
  29. Takaffoli M, Sangi F, Fagnan J, Zäıane OR (2011) Community evolution mining in dynamic social networks. Procedia Soc Behav Sci 22:49–58CrossRefGoogle Scholar
  30. Xiao G, Zheng Z, Wang H (2017) Evolution of Linux operating system network. Phys A Stat Mech Appl 466:249–258CrossRefGoogle Scholar
  31. Xu H, Hu Y, Wang Z, Ma J, Xiao W (2013) Core-based dynamic community detection in mobile social networks. Entropy 15:5419–5438CrossRefzbMATHGoogle Scholar
  32. Zygmunt A, Bródka P, Kazie nko P, Koźlak J (2012) Key person analysis in social communities within the blogosphere. J Univ Comput Sci 18(4):577–597Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Stanisław Saganowski
    • 1
    Email author
  • Piotr Bródka
    • 1
  • Przemysław Kazienko
    • 1
  1. 1.Department of Computational IntelligenceWrocław University of Science and TechnologyWrocławPoland

Section editors and affiliations

  • Huan Liu
    • 1
  • Lei Tang
    • 2
  1. 1.Arizona State UniversityTempeUSA
  2. 2.Chief Data Scientist, Clari Inc.SunnyvaleUSA