Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Extracting and Inferring Communities Via Link Analysis

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7163-9_218-1




A set of n ≥ 2 nodes among which all possible edges are expressed


A community quality measure, defined as the fraction of edges for which one node is inside the community and one node is outside it; see Leskovec et al. (2010)

Edge betweenness

The number of shortest paths between pairs of vertices that run along an edge (Girvan and Newman 2002)

Edge density

Given a set of n nodes, the edge density is the number of edges expressed over the total possible number of nodes (which is \( \frac{n\left( n-1\right)}{2} \)


Europe Marketing 
This is a preview of subscription content, log in to check access


  1. Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multi-scale complexity in networks. Nature. http://www.citebase.org/abstract?id=oai:arXiv.org:0903.3178
  2. Berlingerio M, Coscia M, Giannotti F (2011) Finding and characterizing communities in multidimensional networks. In: ASONAM, Kaohsiung. IEEEGoogle Scholar
  3. Coscia M, Giannotti F, Pedreschi D (2011) A classification for community discovery methods in complex networks. Stat Anal Data Min 4(5):512–546. doi:10.1002/sam.10133MathSciNetCrossRefGoogle Scholar
  4. Davis A, Gardner B, Gardner M (1941) Deep South: a social anthropological study of caste and class. University of Chicago Press, ChicagoGoogle Scholar
  5. Everett M, Borgatti S (1996) Exact colorations of graphs and digraphs. Soc Networks 18(4):319–331. doi:10.1016/0378-8733(95)00286-3CrossRefGoogle Scholar
  6. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174. doi:10.1016/j.physrep.2009.11.002. http://www.sciencedirect.com/science/article/B6TVP-4XPYXF1-1/2/99061fac6435db4343b2374d26e64ac1 MathSciNetCrossRefGoogle Scholar
  7. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99:7821. http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0112110 MathSciNetCrossRefMATHGoogle Scholar
  8. Goyal A, Bonchi F, Lakshmanan LV (2008) Discovering leaders from community actions. In: Proceeding of the 17th ACM conference on information and knowledge management, CIKM’08, Napa Valley. ACM, New York, pp 499–508. doi:10.1145/1458082.1458149CrossRefGoogle Scholar
  9. Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78:046110. doi:10.1103/PhysRevE.78.046110CrossRefGoogle Scholar
  10. Leskovec J, Lang KJ, Mahoney M (2010) Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th international conference on world wide web, WWW’10, Raleigh. ACM, New York, pp 631–640CrossRefGoogle Scholar
  11. Lorrain F, White HC (1971) Structural equivalence of individuals in social networks. J Math Sociol 1(1):49–80. doi:10.1080/0022250X.1971.9989788CrossRefGoogle Scholar
  12. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–878MathSciNetCrossRefMATHGoogle Scholar
  13. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113. http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0308217 CrossRefGoogle Scholar
  14. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818CrossRefGoogle Scholar
  15. Palla G, Barabasi A, Vicsek T (2007) Quantifying social group evolution. Nature 446:664–667. doi:10.1038/nature05670CrossRefGoogle Scholar
  16. Pons P, Latapy M (2006) Computing communities in large networks using random walks. J Graph Algorithms Appl. http://www.citebase.org/abstract?id=oai:
  17. Porter MA, Onnela JP, Mucha PJ (2009) Communities in networks. Not Am Math Soc 56:1082. http://www.citebase.org/abstract?id=oai MathSciNetMATHGoogle Scholar
  18. Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76:036106. doi:10.1103/PhysRevE.76.036106CrossRefGoogle Scholar
  19. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105:1118–1123. doi:10.1073/pnas.0706851105,0707.0609CrossRefGoogle Scholar
  20. Wasserman S, Anderson C (1987) Stochastic a posteriori blockmodels: construction and assessment. Soc Networks 9:1–36MathSciNetCrossRefGoogle Scholar

Recommended Reading

  1. Chakrabarti D, Faloutsos C (2006) Graph mining: laws, generators, and algorithms. ACM Comput Surv 38(1):2CrossRefGoogle Scholar
  2. Danon L, Duch J, Diaz-Guilera A, Arenas A (2005) Comparing community structure identification. J Stat Mech Theory Exp 2005(9):P09008CrossRefGoogle Scholar
  3. Newman M (2004) Detecting community structure in networks. Eur Phys J B 38:321–330CrossRefGoogle Scholar
  4. Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64CrossRefMATHGoogle Scholar
  5. Scott JP (2000) Social network analysis: a handbook. Sage, London/ThousandsGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Michele Coscia
    • 1
  • Fosca Giannotti
    • 2
  • Dino Pedreschi
    • 3
  1. 1.Center for International Development (CID), Harvard Kennedy SchoolCambridgeUSA
  2. 2.KDDLab, ISTI-CNRPisaItaly
  3. 3.KDDLab, University of PisaPisaItaly