Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Social-Based Collaborative Filtering

  • Kostas StefanidisEmail author
  • Eirini Ntoutsi
  • Haridimos Kondylakis
  • Yannis Velegrakis
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7163-9_110171-1



Collaborative filtering

Given a ratings matrix R, representing the preferences of users U for items I, recommend to each user a list of items in descending order of their relevance for the user. The relevance scores are estimated based on ratings of similar users.

Ratings matrix

Assume a set of users U and a set of items I in the recommender system. A user uU might provide her preference for an item iI in form of a rating denoted by rating (u, i), which typically takes values in (Adomavicius et al. 2011; Blei et al. 2003). The preferences of users for individual items are represented by a ratings matrix R, where the Ru,i entry corresponds to rating (u, i).


A suggestion or proposal to a user for an item, e.g., book, movie, video, news article, that is potentially interesting for the user.

Recommender system

A system or engine that produces recommendations by predicting the...

This is a preview of subscription content, log in to check access.


  1. Adomavicius G, Sankaranarayanan R, Sen S, Tuzhilin A (2005) Incorporating contextual information in recommender systems using a multidimensional approach. TIS, 23(1):103–145Google Scholar
  2. Adomavicius G, Manouselis N, Kwon Y (2011) Multi-criteria recommender systems. In: Recommender systems handbook. Springer US, Boston, MA, pp 769–803Google Scholar
  3. Amer-Yahia S, Lakshmanan LVS, Yu C (2009) Socialscope: enabling information discovery on social content sites. In: CIDR, Asilomar, CA, USAGoogle Scholar
  4. Backstrom L, Sun E, Marlow C (2010) Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of the 19th international conference on world wide web, WWW 2010, Raleigh, 26–30 Apr 2010. pp 61–70Google Scholar
  5. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(4–5):9931022zbMATHGoogle Scholar
  6. Chen G, Chen L (2014) Recommendation based on contextual opinions. In: UMAP, Aalborg, DenmarkGoogle Scholar
  7. Cheng Z, Caverlee J, Lee K (2010) You are where you tweet: a content-based approach to geo-locating twitter users. In: Proceedings of the 19th ACM conference on information and knowledge management, CIKM 2010, Toronto, 26–30 Oct 2010, pp 759–768Google Scholar
  8. Christophides V, Efthymiou V, Stefanidis K (2015) Entity resolution in the web of data. Synthesis lectures on the semantic web: theory and technology. Morgan & Claypool Publishers, California, USAGoogle Scholar
  9. Davis CA Jr, Pappa GL, de Oliveira DRR, de Lima Arcanjo F (2011) Inferring the location of twitter messages based on user relationships. Trans GIS 15(6):735–751CrossRefGoogle Scholar
  10. Desrosiers C, Karypis G (2011) A comprehensive survey of neighborhood-based recommendation methods. In: Recommender systems handbook. Springer US, Boston, MA, pp 107–144Google Scholar
  11. Ding Y, Li X (2005) Time weight collaborative filtering. In: CIKM, ACM, New York, NY, USAGoogle Scholar
  12. Fagin R (2002) Combining fuzzy information: an overview. SIGMOD Rec 31(2):109–118CrossRefGoogle Scholar
  13. Fu Y, Zhu X, Li B (2013) A survey on instance selection for active learning. Knowl Inf Syst 35(2):249–283CrossRefGoogle Scholar
  14. Han B, Cook P, Baldwin T (2012) Geolocation prediction in social media data by finding location indicative words. In: COLING 2012, 24th international conference on computational linguistics, proceedings of the conference: technical papers, 8–15 Dec 2012, Mumbai, pp 1045–1062Google Scholar
  15. Hecht B, Hong L, Suh B, Chi EH (2011) Tweets from Justin Bieber’s heart: the dynamics of the location field in user profiles. In: Proceedings of the international conference on human factors in computing systems, CHI 2011, Vancouver, 7–12 May 2011, pp 237–246Google Scholar
  16. Herrmann LR (1976) Laplacian-isoparametric grid generation scheme. J Eng Mech Div 5(102):749756Google Scholar
  17. Jamali M, Ester M (2009) Trustwalker: a random walk model for combining trust-based and item-based recommendation. In: SIGKDD, KDD. ACM, Paris, France, pp 397–406Google Scholar
  18. Kondylakis H, Koumakis L, Kazantzaki E, Chatzimina M, Psaraki M, Marias K, Tsiknakis M (2015) Patient empowerment through personal medical recommendations. In: MEDINFO, Sao Paulo, BrazilGoogle Scholar
  19. Konstan JA, Miller BN, Maltz D, Herlocker JL, Gordon LR, Riedl J (1997) Grouplens: applying collaborative filtering to use net news. Commun ACM 40(3):77–87CrossRefGoogle Scholar
  20. Koren Y (2009) Collaborative filtering with temporal dynamics. In: SIGKDD, ACM, New York, NY, USAGoogle Scholar
  21. Li R, Wang S, Deng H, Wang R, Chang KC-C (2012) Towards social user profiling: unified and discriminative influence model for inferring home locations. In: The 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ‘12, Beijing, 12–16 Aug 2012, pp 1023–1031Google Scholar
  22. Li R, Wang C, Chang KC (2014) User profiling in an ego network: co-profiling attributes and relationships. In: 23rd international world wide web conference, WWW ‘14, Seoul, 7–11 Apr 2014, pp 819–830Google Scholar
  23. McAuley J, Leskovec J (2013a) Hidden factors and hidden topics: understanding rating dimensions with review text. In: RecSys, ACM, New York, NY, USAGoogle Scholar
  24. McAuley JJ, Leskovec J (2013b) From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. In: Proceedings of the 22nd international conference on world wide web. ACM, New York, NY, USA, pp 897–908Google Scholar
  25. Mooney RJ, Roy L (2000) Content-based book recommending using learning for text categorization. In: ACM DL, ACM, New York, NY, USAGoogle Scholar
  26. Pennacchiotti M, Gurumurthy S (2011) Investigating topic models for social media user recommendation. In: WWW, ACM, New York, NY, USA, pp 101–102Google Scholar
  27. Prelic A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9):1122–1129CrossRefGoogle Scholar
  28. Sadilek A, Kautz HA, Bigham JP (2012) Finding your friends and following them to where you are. In: Proceedings of the fifth international conference on web search and web data mining, WSDM 2012, Seattle, 8–12 Feb 2012, pp 723–732Google Scholar
  29. Stefanidis K, Shabib N, Nørvåg K, Krogstie J (2012) Contextual recommendations for groups. In: Advances in conceptual modeling ER 2012 workshops, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 89–97Google Scholar
  30. Stefanidis K, Ntoutsi E, Petropoulos M, Nørvåg K, Kriegel H (2013) A framework for modeling, computing and presenting time-aware recommendations. Large Scale Data Know Centered Syst 10:146–172Google Scholar
  31. Tang J, Yao L, Zhang D, Zhang J (2010) A combination approach to web user profiling. TKDD 5(1):2CrossRefGoogle Scholar
  32. Wischenbart M, Mitsch S, Kapsammer E, Kusel A, Pröll B, Retschitzegger W, Schwinger W, Schönböck J, Wimmer M, Lechner S (2012) User profile integration made easy: model-driven extraction and transformation of social network schemas. In: WWW, ACM, New York, NY, USAGoogle Scholar
  33. Zhao WX, Jiang J, Weng J, He J, Lim E, Yan H, Li X (2011) Comparing twitter and traditional media using topic models. In: ECIR, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 338–349Google Scholar
  34. Zimmermann M, Ntoutsi E, Spiliopoulou M (2015) Discovering and monitoring product features and the opinions on them with OPINSTREAM. Neurocomputing 150:318–330CrossRefGoogle Scholar

Recommended Reading

  1. Shi Y, Larson M, Hanjalic A (2014) Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges. ACM Comput Surv 47(1):3:1–3:45CrossRefGoogle Scholar
  2. Stefanidis K, Ntoutsi E, Kondylakis H Information hunting: the many faces of recommendations for data exploration. ACM SIGMOD Blog. http://wp.sigmod.org/?p=1580

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Kostas Stefanidis
    • 1
    Email author
  • Eirini Ntoutsi
    • 2
    • 5
  • Haridimos Kondylakis
    • 2
    • 3
  • Yannis Velegrakis
    • 4
  1. 1.School of Information SciencesUniversity of TampereTampereFinland
  2. 2.Department of Electrical Engineering and Computer ScienceLeibniz University HannoverHannoverGermany
  3. 3.Foundation for Research and Technology HellasInstitute of Computer Science (ICS)HellasGreece
  4. 4.Department of Information Engineering and Computer ScienceUniversity of TrentoTrentoItaly
  5. 5.Ludwig Maximilian Univ. MunichMunichGermany

Section editors and affiliations

  • Giovanni Semeraro
    • 1
  • Cataldo Musto
    • 2
  1. 1.Department of Computer ScienceUniversity of Bari "Aldo Moro"BariItaly
  2. 2.BariItaly