Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Recommender Systems Based on Linked Open Data

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7163-9_110165-1

Synonyms

Glossary

RSs

Recommender Systems

LOD

Linked Open Data

Semantic Web

Web of linked data

RDF

Resource Description Framework

SPARQL

Query language for the Semantic Web

SPrank

Semantic Path-based ranking algorithm for recommendation

Definition

The Linked Open Data initiative (Bizer et al. 2009) has allowed the publication of a vast amount of data in the Semantic Web. Concurrently, growing massive amount of information on the web has led us in the Information Overload era, where the enormous amount of information and choices undermines the user experience. Recommender Systems help users to find what is relevant for them in a vast range of possibilities. Recommender Systems can benefit from the use of knowledge encoded in the Linked Open Data to provide better recommendations.

Introduction

In the last years, we assisted to the shift of the Web from a distributed collection of hyper-linked documents...

This is a preview of subscription content, log in to check access

References

  1. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749CrossRefGoogle Scholar
  2. Anand SS, Kearney P, Shapcott M (2007) Generating semantically enriched user profiles for web personalization. ACM Trans Internet Technol 7(4):22CrossRefGoogle Scholar
  3. Ayala VAA, Przyjaciel-Zablocki M, Hornung T, Schätzle A, Lausen G (2014) Extending sparql for recommendations. In: Proceedings of semantic web information management on semantic web information management, SWIM’14, ACM, New York, 2014, pp 1:1–1:8Google Scholar
  4. Balabanović M, Shoham Y (1997) Fab: content-based, collaborative recommendation. Commun ACM 40(3):66–72CrossRefGoogle Scholar
  5. Bizer C, Heath T, Berners-Lee T (2009) Linked data – the story so far. Int J Semantic Web Inf Syst 5(3):1–22CrossRefGoogle Scholar
  6. Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data, SIGMOD ‘08, ACM, New York, 2008, pp 1247–1250Google Scholar
  7. Breese JS, Heckerman D, Kadie C (1998) Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the fourteenth conference on uncertainty in artificial intelligence, UAI’98. Morgan Kaufmann, San Francisco, pp 43–52Google Scholar
  8. Burke RD (2007) Hybrid web recommender systems. In: The adaptive web, methods and strategies of web personalization. Springer, Berlin/Heidelberg, pp 377–408Google Scholar
  9. Cantador I, Bellog´ın A, Castells P (2008) A multilayer ontology-based hybrid recommendation model. AI Commun Special Issue on Rec Sys 21(2–3):203–210MathSciNetMATHGoogle Scholar
  10. Cantador I, Brusilovsky P, Kuflik T (2011) Second workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th ACM conference on recommender systems, RecSys 2011, ACM, New York, 2011Google Scholar
  11. Castells P, Hurley NJ, Vargas S (2015) Novelty and diversity in recommender systems. Springer, Boston, pp 881–918Google Scholar
  12. Ceccarelli D, Lucchese C, Orlando S, Perego R, Trani S (2013) Dexter: an open source framework for entity linking. In: Proceedings of the sixth international workshop on exploiting semantic annotations in information retrieval, ESAIR ‘13, ACM, New York, 2013, pp 17–20Google Scholar
  13. Di Noia T, Mirizzi R, Ostuni VC, Romito D, Zanker M (2012) Linked open data to support content-based recommender systems. In: Proceedings of the 8th international conference on semantic systems, I-SEMANTICS ‘12, ACM, New York, 2012, pp 1–8Google Scholar
  14. Di Noia T, Ostuni VC, Tomeo P, Di Sciascio E (2016) Sprank: semantic path-based ranking for top-n recommendations using linked open data. ACM Trans Intell Syst Technol (TIST) 8(1):9:1–9:34Google Scholar
  15. Di Noia T, Rosati J, Tomeo P, Di Sciascio E (2017) Adaptive multi-attribute diversity for recommender systems. Inform Sci 382–383:234–253Google Scholar
  16. Dojchinovski M, Vitvar T (2014) Personalised access to linked data. EKAW 8876:121–136Google Scholar
  17. Fernández-Tob´ ıas I, Cantador I, Kaminskas M, Ricci F (2011) A generic semanticbased framework for cross-domain recommendation. In: Proceedings of the 2nd international workshop on information heterogeneity and fusion in recommender systems, HetRec ‘11, ACM, New York, 2011, pp 25–32Google Scholar
  18. Ferragina P, Scaiella, U (2010) Tagme: on-the-fly annotation of short text fragments (by wikipedia entities). In: Proceedings of the 19th ACM international conference on information and knowledge management, CIKM ‘10, ACM, New York, 2010, pp 1625–1628Google Scholar
  19. de Gemmis M, Lops P, Musto C, Narducci F, Semeraro G (2015) Semantics-aware content-based recommender systems. Springer, Boston, pp 119–159Google Scholar
  20. Gunawardana A, Shani G (2015) Evaluating recommender systems. Springer, Boston, pp 265–308Google Scholar
  21. Heitmann B, Hayes C (2010) Using linked data to build open, collaborative recommender systems. In: AAAI spring symposium: linked data meets artificial intelligence. AAAI Press, StanfordGoogle Scholar
  22. Jannach D, Zanker M, Felfernig A, Friedrich G (2010) Recommender systems and the next-generation web. In: Recommender systems. Cambridge University press, Cambridge Books Online, New York, pp 253–288 Google Scholar
  23. Jin R, Chai JY, Si L (2004) An automatic weighting scheme for collaborative filtering. In: Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval, SIGIR ‘04, ACM, New York, 2004, pp 337–344Google Scholar
  24. Khrouf H, Troncy R (2013) Hybrid event recommendation using linked data and user diversity. In: Proceedings of the 7th ACM conference on recommender systems, RecSys ‘13, ACM, New York, 2013, pp 185–192Google Scholar
  25. Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes PN, Hellmann S, Morsey M, van Kleef P, Auer S, Bizer C (2015) DBpedia – a large-scale, multilingual knowledge base extracted from wikipedia. Semant Web J 6(2):167–195Google Scholar
  26. Liu T-Y (2009) Learning to rank for information retrieval. Found Trends Inf Retr 3(3):225–331CrossRefGoogle Scholar
  27. Lommatzsch A, Plumbaum T, Albayrak S (2011) A linked dataverse knows better: boosting recommendation quality using semantic knowledge. In: Proceedings of the 5th International Conference on advances in semantic processing, IARIA, Wilmington, 2011, pp 97–103Google Scholar
  28. Maidel V, Shoval P, Shapira B, Taieb-Maimon M (2008). Evaluation of an ontologycontent based filtering method for a personalized newspaper. In: Proceedings of the 2008 ACM conference on recommender systems, RecSys 2008, Lausanne, 23–25 Oct 2008. ACM, New York, pp 91–98Google Scholar
  29. Marie N, Corby O, Gandon F, Ribière M (2013) Composite interests’ exploration thanks to on-the-fly linked data spreading activation. In: Proceedings of the 24th ACM conference on hypertext and social media, HT ‘13. ACM, New York, pp 31–40Google Scholar
  30. Mendes PN, Jakob M, A. Garc´ıa-Silva, Bizer, C (2011) Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th international conference on semantic systems, I-semantics ‘11, ACM, New York, 2011, pp 1–8Google Scholar
  31. Middleton SE, Shadbolt NR, De Roure DC (2004) Ontological user profiling in recommender systems. ACM Trans Inf Syst 22:54–88CrossRefGoogle Scholar
  32. Mobasher, B, Jin X, Zhou Y (2004) Semantically enhanced collaborative filtering on the web. In: Berendt B, Hotho A, Mladenic D, Someren M, Spiliopoulou M, Stumme G (eds) Web mining: from web to semantic web, vol 3209 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 57–76Google Scholar
  33. Moro A, Raganato A, Navigli R (2014) Entity linking meets word sense disambiguation : a unified approach. Trans Assoc Comput Linguist 2:231–244Google Scholar
  34. Musto C, Semeraro G, Lops P, de Gemmis M (2014) Combining distributional semantics and entity linking for context-aware content-based recommendation. In: User modeling, adaptation, and personalization – 22nd international conference, UMAP, Aalborg, 7–11 July 2014, pp 381–392Google Scholar
  35. Musto C, Lops P, Basile P, de Gemmis M, Semeraro G (2016) Semantics-aware graph-based recommender systems exploiting linked open data. In: Proceedings of the 2016 conference on user modeling adaptation and personalization, UMAP ‘16, ACM, New York, 2016, pp 229–237Google Scholar
  36. Nguyen P, Tomeo P, Di Noia T, Di Sciascio E (2015a) An evaluation of simrank and personalized pagerank to build a recommender system for the web of data. In: Proceedings of the 24th international conference on World Wide Web, WWW ‘15 companion, ACM, New York, 2015, pp 1477–1482Google Scholar
  37. Nguyen PT, Tomeo P, Di Noia T, Di Sciascio, E (2015b) Content-based recommendations via DBpedia and Freebase: a case study in the music domain. Springer International Publishing, Cham, pp 605–621Google Scholar
  38. Ostuni, VC, Di Noia, T, Di Sciascio, E, Mirizzi R (2013) Top-n recommendations from implicit feedback leveraging linked open data. In: Proceedings of the 7th ACM conference on recommender systems, RecSys ‘13, ACM, New York, 2013, pp 85–92Google Scholar
  39. Ostuni VC, Oramas S, Di Noia T, Serra X, Di Sciascio E (2016) Sound and music recommendation with knowledge graphs. ACM Trans Intell Syst Technol, 8(2):21:1–21:21Google Scholar
  40. Passant A (2010) Measuring semantic distance on linking data and using it for resources recommendations. In: AAAI spring symposium: linked data meets artificial intelligence. AAAI, 2010Google Scholar
  41. Pazzani M, Billsus D (1997) Learning and revising user profiles: the identification ofinteresting web sites. Mach Learn 27(3):313–331CrossRefGoogle Scholar
  42. Pazzani MJ, Billsus D (2007) Content-based recommendation systems. In: The adaptive web. Springer, Berlin/Heidelberg, pp 325–341CrossRefGoogle Scholar
  43. Ragone A, Tomeo P, Magarelli C, Di Noia T, Palmonari M, Maurino A, Di Sciascio E (2017) Schema-summarization in linked-data-based feature selection for recommender systems. In: 32nd ACM SIGAPP symposium on applied computing. ACM, New YorkGoogle Scholar
  44. Ricci F, Rokach L, Shapira B, eds (2015) Recommender systems handbook. Springer, New YorkGoogle Scholar
  45. Rizzo G, Troncy R (2012) Nerd: a framework for unifying named entity recognition and disambiguation extraction tools. In: Proceedings of the demonstrations at the 13th conference of the European chapter of the Association for Computational Linguistics, EACL ‘12, Association for Computational Linguistics, Stroudsburg, 2012, pp 73–76Google Scholar
  46. Rowe M (2014a) Semanticsvd++: incorporating semantic taste evolution for predicting ratings. In: 2014 IEEE/WIC/ACM international conferences on web intelligence, Wi 2014. IEEE Computer Society, Washington, DCGoogle Scholar
  47. Rowe M (2014b) Transferring semantic categories with vertex kernels: recommendations with semanticsvd++. In: The semantic web – ISWC 2014 – 13th international semantic web conference, 2014. Springer, New YorkGoogle Scholar
  48. Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, WWW ‘01, 2001, pp 285–295Google Scholar
  49. Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender systems. In: The adaptive web. Springer, Berlin/Heidelberg, pp 291–324CrossRefGoogle Scholar
  50. Schwartz B (2005). The paradox of choice: why more is less. Harper Perennial, New York CityGoogle Scholar
  51. Semeraro G, Lops P, Basile P, de Gemmis M (2009). Knowledge infusion into content-based recommender systems. In: Proceedings of the third ACM conference on recommender systems, RecSys ‘09, ACM, New York, 2009, pp 301–304Google Scholar
  52. Shen W, Wang J, Luo P, Wang M (2012) Linden: linking named entities with knowledge base via semantic knowledge. In: Proceedings of the 21st international conference on World Wide Web, WWW ‘12, ACM, New York, 2012, pp 449–458Google Scholar
  53. Speier C, Valacich JS, Vessey I (1999) The influence of task interruption on individual decision making: an information overload perspective. Decis Sci 30(2):337–360CrossRefGoogle Scholar
  54. Tomeo P, Fernández-Tob´ ıas I, Di Noia T, Cantador I (2016) Exploiting linked open data in cold-start recommendations with positive-only feedback. In: Proceedings of the 4th Spanish conference on information retrieval, CERI ‘16, ACM, New York, 2016, pp 11:1–11:8Google Scholar
  55. Ziegler C-N, Lausen G, Schmidt-Thieme L (2004) Taxonomy-driven computation of product recommendations. In: Proceedings of the thirteenth ACM international conference on information and knowledge management, CIKM ‘04, ACM, New York, 2004, pp 406–415Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.SisInf LabPolytechnic University of BariBariItaly

Section editors and affiliations

  • Giovanni Semeraro
    • 1
  • Cataldo Musto
    • 2
  1. 1.Department of Computer ScienceUniversity of Bari "Aldo Moro"BariItaly
  2. 2.BariItaly