Skip to main content

Time-Aware Egocentric Network-Based User Profiling

  • 116 Accesses


Modeling temporal user interests; Time-aware social network-based social profile building process; Time-aware social network-based social profiling; Time-aware user interests extraction


Egocentric network:

A special type of social network that involves a focal user called “ego.” The egocentric network of a user (ego) consists of the individuals called “alters” having a direct relationship with the user (ego) together with the relationships between these individuals

User profile:

A record of user information (personnel data, preferences, interests). In information systems, adaptive information mechanisms (e.g., personalization, information access, recommendation) rely on user profiles to propose relevant content according to the user-specific needs

Social profile:

A particular user profile in which the interests are extracted from the information of user social network members


Egocentric network-based user profiling consists in extracting the user interests...


  • Recommender System
  • User Profile
  • Online Social Network
  • Collaborative Filter
  • User Interest

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.


  • Cabanac, Guillaume (2011) Accuracy of Inter-Researcher Similarity Measures Based on Topical and Social Clues. Scientometrics 87(3):597–620. doi:10.1007/s11192-011-0358-1

    CrossRef  Google Scholar 

  • Canut Marie-Françoise, Sirinya On-At, André Péninou, Florence Sèdes (2015) Time-aware egocentric network-based user profiling. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015, ASONAM ’15. ACM, New York, pp 569–572. doi:10.1145/2808797.2809415

  • Carmel, David, Naama Zwerdling, Ido Guy, Shila Ofek-Koifman, Nadav Har’el, Inbal Ronen, Erel Uziel, Sivan Yogev, and Sergey Chernov (2009) Personalized Social Search Based on the User’s Social Network. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, 1227–1236. CIKM ’09. New York, NY, USA: ACM. doi:10.1145/1645953.1646109

  • Cazabet R, Takeda H, Hamasaki M, Amblard F (2012) Using dynamic community detection to identify trends in user-generated content. Soc Net Anal Mining 2(4):361–371. doi:10.1007/s13278-012-0074-8

    CrossRef  Google Scholar 

  • Ding Y, Jacob EK, Caverlee J, Fried M, Zhang Z (2009) Profiling social networks: a social tagging perspective. D-Lib Mag 15(3/4). doi:10.1045/march2009-ding

  • Gauch S, Speretta M, Chandramouli A, Micarelli A (2007) User profiles for personalized information access. In: Brusilovsky P, Kobsa A, Nejdl W (eds) The adaptive Web, Lecture notes in computer science 4321. Springer, Berlin/Heidelberg, pp 54–89.

    CrossRef  Google Scholar 

  • Koren Yehuda (2009) Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’09. ACM, New York, pp 447–456. doi:10.1145/1557019.1557072

  • Li D, Cao P, Guo Y, Lei M (2013) Time weight update model based on the memory principle in collaborative filtering. J Comp 8(11):2763–2767. doi:10.4304/jcp.8.11.2763-2767

    Google Scholar 

  • Li L, Zheng L, Yang F, Li T (2014) Modeling and broadening temporal user interest in personalized news recommendation. Exp Sys App 41(7):3168–3177. doi:10.1016/j.eswa.2013.11.020

    CrossRef  Google Scholar 

  • Liben-Nowell David Jon Kleinberg(2003) The link prediction problem for social networks. In: Proceedings of the twelfth international conference on information and knowledge management, CIKM ’03. ACM, New York, pp 556–559. doi:10.1145/956863.956972

  • Maloof MA, Michalski RS (2000) Selecting examples for partial memory learning. Mach Learn 41(1):27–52. doi:10.1023/A:1007661119649

    CrossRef  MATH  Google Scholar 

  • Massa Paolo, Paolo Avesani (2007) Trust-aware recommender systems. In: Proceedings of the 2007 ACM conference on recommender systems, RecSys ’07. ACM, New York, pp 17–24. doi:10.1145/1297231.1297235.

  • Mislove Alan, Bimal Viswanath, Krishna P. Gummadi, Peter Druschel (2010) You are who you know: inferring user profiles in online social networks. In: Proceedings of the third ACM international conference on Web search and data mining, WSDM ’10. ACM, New York, pp 251–260. doi:10.1145/1718487.1718519

  • On-At, S., A. Quirin, A. Péninou, N. Baptiste-Jessel, M. F. Canut, and F. Sèdes (2016) Taking into Account the Evolution of Users Social Profile: Experiments on Twitter and Some Learned Lessons. In: 2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS), 1–12

    Google Scholar 

  • Raghavan P (2002) Social networks: from the Web to the enterprise. IEEE Internet Comp 6(1):91–94. doi:10.1109/4236.989007

    CrossRef  Google Scholar 

  • Shaw Joseph A, Edward A Fox, Joseph A Shaw, Edward A Fox (1994) Combination of multiple searches. In: The Second Text REtrieval Conference (TREC-2), pp 243–252

    Google Scholar 

  • Sinha Rashmi R, Kirsten Swearingen (2002) Comparing recommendations made by online systems and friends. In: DELOS workshop: personalisation and recommender systems in digital libraries.

  • Tchuente D, Canut M-F, Jessel N, Peninou A, Sèdes F (2013) A community-based algorithm for deriving users’ profiles from egocentrics networks: experiment on Facebook and DBLP. Soc Net Anal Mining 3(3):667–683. doi:10.1007/s13278-013-0113-0

    CrossRef  Google Scholar 

  • Tylenda Tomasz, Ralitsa Angelova, Srikanta Bedathur (2009) Towards time-aware link prediction in evolving social networks. In: Proceedings of the 3rd workshop on social network mining and analysis, SNA-KDD ’09. ACM, New York, pp 9:1–9:10. doi:10.1145/1731011.1731020

  • Wen Zhen, Ching-Yung Lin (2010) On the quality of inferring interests from social neighbors. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’10. ACM, New York, pp 373–382. doi:10.1145/1835804.1835853

  • Wen Zhen, Ching-Yung Lin (2011) Improving user interest inference from social neighbors. In: Proceedings of the 20th ACM international conference on information and knowledge management, CIKM ’11. ACM, New York, pp 1001–1006. doi:10.1145/2063576.2063720

  • Yuan Quan, Gao Cong, Zongyang Ma, Aixin Sun, Nadia Magnenat-Thalmann (2013) Time-aware point-of-interest recommendation. In: Proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval, SIGIR ’13. ACM, New York, pp 363–372. doi:10.1145/2484028.2484030

  • Zeng Y, Y Yao, N Zhong (2009) DBLP-SSE: a DBLP search support engine. In: IEEE/WIC/ACM international joint conferences on Web intelligence and intelligent agent technologies, 2009, WI-IAT ’09, 1: pp 626–630. doi:10.1109/WI-IAT.2009.364

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sirinya On-At .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

On-At, S., Canut, MF., Péninou, A., Sèdes, F. (2017). Time-Aware Egocentric Network-Based User Profiling. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7163-9

  • Online ISBN: 978-1-4614-7163-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering