Advertisement

Melanoma pp 583-597 | Cite as

Genetic Counseling

  • Kelly Jo Hamman
  • Wendy Kohlmann
  • Sancy LeachmanEmail author
Reference work entry

Abstract

Since the first international consensus paper in 2009, genetic counseling and testing options for melanoma have progressed rapidly. The number of known high-penetrance genes has expanded from P16/CDKN2A, P14arf/CDKN2A, and CDK4, to include BAP1, and several telomere-related genes, including TERT, POT1, ACD, and TERF21P. In addition, moderate- and low-penetrance genes have been added to MC1R as contributors to overall risk for melanoma, including: MITF, HERC2/OCA2, TYR, TYRP1, SLC45A2, and ASIP. Besides these genes that increase the inherited risk for melanoma, there are other genes that have well-established roles as high-penetrance genes for other cancer syndromes that appear to also serve as less-penetrant melanoma predisposition genes as well. These other cancer predisposition genes include BRCA1, BRCA2, PTEN, and CHEK2. (The xeroderma pigmentosum spectrum genes are not included in this chapter because genetic counseling for this subset of disorders requires additional considerations specific to the syndrome.) This chapter reviews the data supporting high-, moderate- and low-penetrance genes as relevant melanoma susceptibility genes, suggests a standardized protocol for risk assessment, and presents referral criteria for genetic assessment. The chapter also reviews rapidly progressing genetic testing technologies with an emphasis on selecting the most appropriate test and tailoring the testing process to each individual. Finally, a discussion of nuances related to genetic test interpretation, insurance discrimination, and the unique impact that genetic testing can have on individuals and society is explored.

Keywords

Melanoma Genetics Counseling Testing FAMMM Inherited Familial Predisposition Susceptibility 

References

  1. Al-Khalaf HH, Mohideen P, Nallar SC, Kalvakolanu DV, Aboussekhra A (2013) The cyclin-dependent kinase inhibitor p16INK4a physically interact with transcription factor Sp1 and cyclin-dependent kinase 4 to transactivate microRNA-141 and microRNA-146b-5p spontaneously and in response to ultraviolet light-induced DNA damage. J Biol Chem 288(49):355511–355525CrossRefGoogle Scholar
  2. Aspinwall LG, Taber J, Leaf SL, Kohlmann W, Leachman SA (2013a) Melanoma genetic counseling and test reporting improve screening adherence among unaffected carriers 2 years later. Cancer Epidemiol Biomark Prev 22(10):1687–1697CrossRefGoogle Scholar
  3. Aspinwall LG, Taber J, Leaf SL, Kohlmann W, Leachman SA (2013b) Genetic testing for hereditary melanoma and pancreatic cancer: a longitudinal study of psychologal outcomes. Psychooncology 22(2):276–289PubMedGoogle Scholar
  4. Aspinwall LG, Taber J, Kohlmann W, Leaf SL, Leachman SA (2014) Unaffected family members report improvements in daily routine sun protection 2 years following melanoma. Genet Med 16(11):846–853CrossRefGoogle Scholar
  5. Aspinwall LG, Stump T, Taber JM, Kohlmann W, Leaf SL, Leachman SA (2015) Impact of melanoma genetic test reporting on perceived control over melanoma prevention. J Behav Med 38(5):754–765CrossRefGoogle Scholar
  6. Begg CB, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, Millikan RC, Gruber SB, Anton-Culver H, Zanetti R, Gallager RP, Dwyer T, Rebbeck TR, Mitra N, Busam K, From L, Berwick M, Genes Environment and Melanoma Study Group (2005) Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J Natl Cancer Inst 97(20):1507–1515CrossRefGoogle Scholar
  7. Berwick M, Buller D, Cust A, Gallagher R, Lee TK, Meyskens F, Pandey S, Thomas NE, Veierod MB, Ward S (2016) Melanoma epidemiology and prevention. Cancer Treat Res 167:17–49CrossRefGoogle Scholar
  8. Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B, Chompret A, Ghiorzo P, Gruis N, Hansson J, Harland M, Hayward N, Holland EA, Mann GJ, Mantelli M, Nancarrow D, Platz A, Tucker MA, Melanoma Genetics Consortium (2002) Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 94(12):894–903CrossRefGoogle Scholar
  9. Box NFDD, Chen W, Stark M, Martin NG, Sturm RA, Hayward NK (2001) MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet 64(4):765–773CrossRefGoogle Scholar
  10. Canto MI, Harinck F, Hruban RH, Offerhaus GJ, Poley J-W, Kamel I, Nio Y, Schulick RS, Bassi C, Lluijt I, Levy MJ, Chak A, Fockens P, Goggins M, Bruno M, International Cancer of the Pancreas Screening (CAPS) Consortium (2013) International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 62(3):339–347CrossRefGoogle Scholar
  11. Celebi JT, Ward K, Wanner M, Polsky D, Kopf AW (2005) Evaluation of germline CDKN2A,ARF,CDK4,PTEN and BRAF alterations in atypical mole syndrome. Clin Exp Dermatol 30:68–70CrossRefGoogle Scholar
  12. Cust AE, Harland M, Makalic E, Schmidt D, Dowty JG, Aitken JF, Agha-Hamiltom C, Armstrong BK, Barrett JH, Chan M, Chang YM, Gascoyne J, Giles GG, Holland EA, Kefford RF et al (2011) Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK. J Med Genet 48(4):266–272CrossRefGoogle Scholar
  13. Cybulski C, Górski B, Huzarski T, Masojc B, Mierejewski M, Debniak T, Teodorczyk U, Byrski T, Gronwald J et al (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75(6):1131–1135CrossRefGoogle Scholar
  14. Daly MB, Pilarski R, Axilbund JE, Berry M, Buys SS, Crawfor B, Farmer M, Friedman S, Garber JE, Khan S, Klein C, Kohlmann W, Kurian A, Litton JK, Madlensky L, Marcom PK, Merajver SD, Offit K, Pal T, Rana H, Reiser G, Robson ME, Shannon KM, Swisher E, Voian NC, Weitzel JN, Whelan A, Wick MJ, Wiesner GL, Dwyer M, Kumar R, Darlow S (2016) Genetic/familial high-risk assessment: breast and ovarian, version 2.2015. J Natl Compr Cancer Netw 14(2):153–162CrossRefGoogle Scholar
  15. de Snoo FA, Kroon MW, Bergman W, ter Huume JA, Houwing-Duistermaat JJ, van Mourik L et al (2007) From sporadic atypical nevi to familial melanoma: risk analysis for melanoma in sporadic nevus patients. J Am Acad Dermatol 56:748–752CrossRefGoogle Scholar
  16. de Snoo FA, Bishop D, Bergman W, van Leeuwen I, van der Drift C, van Nieupoort F et al (2008) Increased risk of cancer other than melanoma in CDKN2A found mutation (p16-Leiden)-positive melaoma families. Clin Cancer Res 14:7151–7157CrossRefGoogle Scholar
  17. Demenais F, Mohamdi H, Chaudru V, Am G, Newton-Bishop JA, Bishop DT, Kanetsky PA, Hayward NK, Gillanders E, Elder DE, Avril MF, Azizi E, van Belle P, Bergman W, Bianchi-Scarra G, Bressac-de paillerets B, Calista D, Carrera C, Hansson J et al (2010) Association of MC1R variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study. J Natl Cancer Inst 102(20):1568–1583CrossRefGoogle Scholar
  18. Evans DG, Susnerwala I, Dawson J, Woodward E, Maher ER, Lalloo F (2010) Risk of breast cancer in male BRCA2 carriers. J Med Genet 47(10):710–711CrossRefGoogle Scholar
  19. Florell SR, Meyer L, Boucher KM, Grossman D, Cannon-Albright LA, Harris RM, Samlowski WE, Zone JJ, Leachman SA (2008) Increased melanocytic nevi and nevus density in a G-34T CDKN2A/p16 melanoma prone pedigree. J Invest Dermatol 128(8):2122–2125CrossRefGoogle Scholar
  20. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, Melchi CF (2005a) Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 41(1):45–60CrossRefGoogle Scholar
  21. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Zanetti R, Masini C, Boyle P, Melchi CF (2005b) Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer 41(14):2040–2059CrossRefGoogle Scholar
  22. Genetic/Familial High-Risk Assessment: Breast and Ovarian Cancer Version 2.2016 (2016) NCCN clinical practice guidelines in oncology. National Comprehensive Cancer Network, Fort WashingtonGoogle Scholar
  23. Ghiorzo P, Pastorino L, Queirolo P, Bruno W, Tibiletti MG, Nasti S, Andreotti V, Genoa Pancreatic Cancer Study Group, Paillerets BB, Bianchi Scarra G (2013) Prevalence of the E318K MITF germline mutation in Italian melanoma patients: associations with histological subtypes and family cancer history. Pigment Cell Melanoma Res 26(2):259–262CrossRefGoogle Scholar
  24. Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril MF, Aziz E, Bianchi-Scarra G, Bishop DT, Bressac-de Paillerets B, Bruno W, Calista D, Cannon Albright LA, Demenais F, Elder DE, Ghiorzo P, Gruis NA, Hansson J, Hogg D, Holland EA, Kanetsky PA et al (2006) High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res 66(20):9818–9828CrossRefGoogle Scholar
  25. Goldstein AMCA, Harland M, Hayward NK, Demenais F, Bishop DT, Aziz E, Bergman W, Bianchi-Scarra G, Bruno W, Calista D, Albright LA, Chaudru V, Chompret A, Cuellar F, Elder DE, Ghiorzo P, Gillanders EM, Gruis NA, Hansson J, Hogg D, Holland EA, Kanetsky PA, Kefford RF, Landi MT, Lang J, Leachman SA, MackKie RM, Magnusson V, Mann GJ, Bishop JN, Palmer JM, Puig S, Puig-Butille JA, Stark M, Tsao H, Tucker MA, Whitaker L, Yakobson E, Lund Melaoma Study Group, Melanoma Genetics Consortium (GenoMEL) (2007) Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet 44(2):99–106CrossRefGoogle Scholar
  26. Green AC, Williams G, Logan V, Strutton GM (2011) Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol 29(3):257–263CrossRefGoogle Scholar
  27. Hansen CB, Wadge L, Lowstuter K, Boucher K, Leachman SA (2004) Clinical germline genetic testing for melanoma. Lancet Oncol 5(5):314–319CrossRefGoogle Scholar
  28. Harland M, Petljak M, Robles-Espinoza CD, Ding Z, Gruis NA, van Doorn R, Pooley KA, Dunning AM, Aoude LG et al (2016) Germline TERT promoter mutations are rare in familial melanoma. Familial Cancer 15:139–144CrossRefGoogle Scholar
  29. Hodis E, Watson I, Kryukov GV, Arnold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulski K, Sivachenko A, Boet D, Saksensa G, Stransky N et al (2012) A landscape of driver mutations in melanoma. Cell 150(2):251–263CrossRefGoogle Scholar
  30. Hollands GJ, French DP, Griffin SJ, Prevost AT, Sutton S, King S, Marteau TM (2016) The impact of communicating genetic risks of disease on risk-reducing health behavior: a systematic review. BMJ 15(352):i1102CrossRefGoogle Scholar
  31. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T, Miki Y, Weaver-Feldhaus J et al (1994) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 8(1):23–26CrossRefGoogle Scholar
  32. Kefford R, Bishop J, Tucker M, Bressac-de Paillerest B, Bianchi-Scarra G, Bergman W, Goldstein A, Puig S, Mackie R, Elder D et al (2002) Genetic testing for melanoma. Lancet Oncol 3(11):653–654CrossRefGoogle Scholar
  33. Leachman SA, Carucci J, Kohlmann W, Banks KC, Asgari MM, Bergman W, Bianchi-Scarra G, Brentall T, Bressac-de Paillerets B, Bruno W et al (2009) Selection criteria of genetic assessment of patients with familial melanoma. J Am Acad Dermatol 61:677.e671–677.e614CrossRefGoogle Scholar
  34. Lindor NM, Goldgar D, Tavtigian SV, Plon SE, Couch FJ (2013) BRCA1/2 sequence variants of uncertain significance: a primer for providers to assist in discussions and in medical management. Oncologist 18:518–524CrossRefGoogle Scholar
  35. Lo JA, Fisher D (2014) The melanoma revolution: from UV carcinogenesis to a new era in therapeutics. Science 346(6212):945–949CrossRefGoogle Scholar
  36. Lu KH, Wood ME, Daniels M, Burke C, Ford J, Kauff ND, Kohlmann W, Lindor NM, Mulvey TM, Robinson L, Rubinstein WS, Stoffel EM, Synder C, Syngal S, Merrill JK, Swartzberg Wollins D, Hughes KS (2014) American Society of Clinical Oncology Expert Statement: collection and use of a cancer family history for oncology providers. J Clin Oncol 32(8):833–840CrossRefGoogle Scholar
  37. Mavaddat N, Peock S, Frost D et al (2013) Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 105(11):812–822CrossRefGoogle Scholar
  38. Mersch J, Jackson M, Park M, Nebgen D, Peterson SK, Singletary C, Arun BK, Litton JK (2015) Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer 121(2):269–275CrossRefGoogle Scholar
  39. Narod SA, Neuhausen S, Vichodez G et al (2008) Rapid progression of prostate cancer in men with a BRCA2 mutation. Br J Cancer 99(2):371–374CrossRefGoogle Scholar
  40. Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, Baumann F, Zhang YA, Gazdar A, Kanodia S et al (2015) High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol 10(4):565–576CrossRefGoogle Scholar
  41. Njauw CN, Kim I, Piris A, Gabree M, Taylor M, Lane AM, DeAngelis MM, Graqoudas E, Duncan LM, Tsao H (2012) Germline BAP1 inactivation is preferentially associated with metastatic ocular melanoma and cutaneous-ocular melanoma families. PLoS One 7(4):e35295CrossRefGoogle Scholar
  42. Parker JF, Florell S, Alexander A, DiSario JA, Shami PJ, Leachman SA (2003) Pancreatic carcinoma surveillance in patients with familial melanoma. Arch Dermatol 139(8):1091–1025CrossRefGoogle Scholar
  43. Pilarski R, Burt R, Kohlmann W, Pho L, Shannon KM, Swisher E (2013) Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst 105(21):1607–1616CrossRefGoogle Scholar
  44. Potrony M, Badenas C, Aguilera P, Puig-Butille JA, Carrera C, Malvehy J, Puig S (2015) Update in genetic susceptibility in melanoma. Ann Transl Med 3(15):210PubMedPubMedCentralGoogle Scholar
  45. Puntervoll HE, Yang X, Vetti HH, Bachmann IM, Avril MF, Benfodda M, Catricala C, Dalle S, Duval-Modeste AB, Ghiorzo P, Grammatico P et al (2013) Melanoma prone families with CDK4 germline mutations: phenotypic profile and associations with MC1R variants. J Med Genet 50(4):264–270CrossRefGoogle Scholar
  46. Rai K, Pilarski R, Cebulla CM, Abdel-Rahman MH (2015) Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin Genet 89:285–294CrossRefGoogle Scholar
  47. Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E, Aveyard J, Sibley K, Whitaker L, Knowles M, Bishop JN, Bishop DT (2001) A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 10(1):55–62CrossRefGoogle Scholar
  48. Ransohoff KJ, Jaju P, Tang JY, Carbone M, Leachman S, Sarin KY (2016) Familial skin cancer syndromes: increased melanoma risk. J Am Acad Dermatol 74(3):423–434CrossRefGoogle Scholar
  49. Soura E, Eliades P, Shannon K, Stratigos AJ, Tsao H (2016) Hereditary melanoma: update on syndromes and management. J Am Acad Dermatol 74:411–420CrossRefGoogle Scholar
  50. Swope VB, Abdel-Malek Z (2016) Significance of the melanocortine 1 and endothelin B receptors in melanocytes homeostasis and prevention of sun-induced genotoxicity. Front Genet 7:146CrossRefGoogle Scholar
  51. Taber JM, Aspinwall L, Stump TK, Kohlmann W, Champine M, Leachman SA (2015) Genetic test reporting enhances understanding of risk information and acceptance of prevention recommendations compared to family history-based counseling alone. J Behav Med 38(5):740–753CrossRefGoogle Scholar
  52. Tagliabue E, Gandini S, Garcia-Borron JC, Maisonneuve P, Newton-Bishop J, Polsky D, Lazovich D, Kumar R, Ghiorzo P, Ferrucci L, Gruis NA, Puig S, Kanetsky PA, Motokawa T et al (2016) Association of melanocortin-1 receptor variants with pigmentary traits in humans: a pooled analysis from the M-Skip Project. J Invest Dermatol 136(9):1914–1917CrossRefGoogle Scholar
  53. Tung N, Lin N, Kidd J, Allen BA, Singh N, Wenstrup RJ, Hartman AR, Winer EP, Garber JE (2016) Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol 34(13):1460–1468CrossRefGoogle Scholar
  54. Vasen H II, Ponce GC, Slater EP, Matthai E, Carrato A, Earl J, Robbers K, van Mil A, Potjer T, Bonsign BA et al (2016) Benefit of surveillance for pancreatic cancer in high-risk individuals: outcome of long-term prospective follow-up studies from three European Expert Centers. J Clin Oncol 34(17):2010–2019CrossRefGoogle Scholar
  55. Weischer M, Heerfordt I, Bojesen SE, Eigentler T, Garbe C, Rocken M, Holmich LR, Schmidt H et al (2012) CHEK2 *1100delC and risk of malignant melanoma: Danish and German studies and meta-analysis. J Invest Dermatol 132(2):299–303CrossRefGoogle Scholar
  56. Wolf Horrell EM, Boulanger M, D’Orazio JA (2016) Melanocortin 1 receptor: structure, function and regulation. Front Genet 7:95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kelly Jo Hamman
    • 1
  • Wendy Kohlmann
    • 2
  • Sancy Leachman
    • 3
    Email author
  1. 1.Department of Molecular and Medical GeneticsOregon Health and Science UniversityPortlandUSA
  2. 2.Huntsman Cancer Institute, University of UtahSalt Lake CityUSA
  3. 3.Department of DermatologyOregon Health and Science UniversityPortlandUSA

Section editors and affiliations

  • Keith T. Flaherty
    • 1
  • Boris C. Bastian
    • 2
  • Hensin Tsao
    • 3
    • 4
  • F. Stephen Hodi
    • 5
    • 6
  1. 1.Henri and Belinda Termeer Center for Targeted TherapiesMGH Cancer CenterBostonUSA
  2. 2.UCSF Helen Diller Family Comprehensive Cancer CenterSan FranciscoUSA
  3. 3.AuburndaleUSA
  4. 4.Harvard-MIT Health Sciences and TechnologyCambridgeUSA
  5. 5.FraminghamUSA
  6. 6.Department of Medicine, Brigham and Women's HospitalDana-Farber Cancer InstituteBostonUSA

Personalised recommendations