Melanoma pp 83-98 | Cite as

Epigenetic Regulation in Melanoma

  • Michelle Dang
  • Leonard ZonEmail author
Reference work entry


Cancer is the accumulation of genetic and epigenetic events that lead to the disruption of normal cellular development and homeostasis. Skin cancer originates from transformed melanocytes and is one of the few cancers with a significantly increasing incidence. Melanoma, the most aggressive form of skin cancer, accounts for the majority of skin cancer-related deaths, and the 5-year survival rate for late-stage melanoma is under 40%. While having some initial success in the clinic, targeted therapies and immunomodulators have a varied rate of response in patients and typically result in the development of drug resistance. The genomic landscape, including the identification of both driver and passenger mutations, in melanoma is well characterized. The epigenetic events that drive melanoma development and metastasis is an area of active research. The recent appreciation of epigenetic contributions to tumorigenesis focuses on DNA methylation, histone modifications, and noncoding RNAs. Here, we highlight key epigenetic mechanisms and how these epigenetic states can be exploited in (pre)clinical applications leading to novel therapeutic avenues.


Melanoma Epigenetics DNA methylation Histone modification Noncoding RNAs 


  1. Albert M, Helin K (2010) Histone methyltransferases in cancer. Semin Cell Dev Biol 21:209–220. Scholar
  2. Bachmann I, Puntervoll H, Otte A, Akslen L (2008) Loss of BMI-1 expression is associated with clinical progress of malignant melanoma. Modern Pathol 21:583–590. Scholar
  3. Ball N, Yohn J, Morelli J (1994) RAS mutations in human melanoma: a marker of malignant progression. J Invest Dermatol 102(3):285–290CrossRefGoogle Scholar
  4. Barradas M, Anderton E, Acosta J et al (2009) Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 23:1177–1182. Scholar
  5. Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  6. Bemis L, Chen R, Amato C et al (2008) MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 68:1362–1368. Scholar
  7. Ceol C, Houvras Y, Jane-Valbuena J et al (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471:513. Scholar
  8. Conway K, Edmiston S, Khondker Z et al (2011) DNA-methylation profiling distinguishes malignant melanomas from benign nevi. Pigment Cell Melanoma Res 24:352–360. Scholar
  9. Croce C (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714. Scholar
  10. Dar A, Majid S, Semir D et al (2011) miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 286:16606–16614. Scholar
  11. Davies H, Bignell G, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949. Scholar
  12. Esteller M, Corn P, Baylin S, Herman J (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229PubMedGoogle Scholar
  13. Fan T, Jiang S, Chung N et al (2011) EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol Cancer Res 9:418–429. Scholar
  14. Fatemi M, Pao M, Jeong S et al (2005) Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res 33:e176–e176. Scholar
  15. Feinberg A, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterpart. Nature 301:89–92CrossRefGoogle Scholar
  16. Felicetti F, Errico M, Bottero L et al (2008) The promyelocytic leukemia zinc finger–microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68: 2745–2754. Scholar
  17. Figueroa M, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567. Scholar
  18. Fiziev P, Akdemir K, Miller J et al (2017) Systematic epigenomic analysis reveals chromatin states associated with melanoma progression. Cell Rep 19: 875–889. Scholar
  19. Freedberg D, Rigas S, Russak J et al (2008) Frequent p16-independent inactivation of p14 ARF in human melanoma. Jnci J Natl Cancer Inst 100:784–795. Scholar
  20. Gallagher S, Gunatilake D, Beaumont K et al (2018) HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int J Cancer 142:1926–1937. Scholar
  21. Garraway L, Widlund H, Rubin M et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436:117. Scholar
  22. Gide T, Wilmott J, Scolyer R, Long G (2017) Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin Cancer Res 24:1260–1270. Scholar
  23. Gollob J, Sciambi C, Peterson B et al (2006) Phase I trial of sequential low-dose 5-Aza-2′-deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. Clin Cancer Res 12:4619–4627. Scholar
  24. Gonzalgo M, Bender C, You E et al (1997) Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res 57:5336–5347PubMedGoogle Scholar
  25. Greger V, Passarge E, Hopping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158CrossRefGoogle Scholar
  26. Gupta R, Shah N, Wang K et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071. Scholar
  27. Haas N, Quirt I, Hotte S et al (2014) Phase II trial of vorinostat in advanced melanoma. Invest New Drug 32:526–534. Scholar
  28. Hesson L, Cooper W, Latif F (2007) The role of RASSF1A methylation in cancer. Dis Markers 23:73–87CrossRefGoogle Scholar
  29. Hodi F, O’Day S, McDermott D et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med 363:711–723. Scholar
  30. Hodis E, Watson IR, Kryukov GV et al (2012) A landscape of driver mutations in melanoma. Cell 150:251–263. Scholar
  31. Hoon D, Spugnardi M, Kuo C et al (2004) Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene 23:4014. Scholar
  32. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21:1253. Scholar
  33. Ibrahim N, Buchbinder E, Granter S et al (2016) A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma. Cancer Med-US 5:3041–3050. Scholar
  34. Jin S, Xiong W, Wu X, Yang L, Pfeifer G (2016) The DNA methylation landscape of human melanoma. Genomics 106:322–330. Scholar
  35. Kadoch C, Hargreaves D, Hodges C et al (2013) Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet 45:592–601. Scholar
  36. Kapoor A, Goldberg M, Cumberland L et al (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105. Scholar
  37. Khaitan D, Dinger M, Mazar J et al (2011) The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 71: 3852–3862. Scholar
  38. Koga Y, Pelizzola M, Cheng E et al (2009) Genome-wide screen of promoter methylation identifies novel markers in melanoma. Genome Res 19:1462–1470. Scholar
  39. Konieczkowski D, Johannessen C, Garraway L (2018) A convergence-based framework for cancer drug resistance. Cancer Cell 33:801–815CrossRefGoogle Scholar
  40. Lahtz C, Stranzenbach R, Fiedler E et al (2010) Methylation of PTEN as a prognostic factor in malignant melanoma of the skin. J Invest Dermatol 130:620–622. Scholar
  41. Lauss M, Haq R, Cirenajwis H et al (2015) Genome-wide DNA methylation analysis in melanoma reveals the importance of CpG methylation in MITF regulation. J Invest Dermatol 135:1820–1828. Scholar
  42. Li P, He Q, Luo C, Qian (2014) Circulating miR-221 expression level and prognosis of cutaneous malignant melanoma. Med Sci Monit 20:2472–2477. Scholar
  43. Lian CG, Xu Y, Ceol C et al (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–1146. Scholar
  44. Mann B, Johnson J, Cohen M et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12: 1247–1252. Scholar
  45. Marzese D, Scolyer R, Huynh J et al (2014) Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis. Hum Mol Genet 23:226–238. Scholar
  46. Mirmohammadsadegh A, Marini A, Nambiar S et al (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66:6546–6552. Scholar
  47. Munster P, Marchion D, Thomas S et al (2009) Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Brit J Cancer 101:1044. Scholar
  48. Network T, Akbani R, Akdemir K et al (2015) Genomic classification of cutaneous melanoma. Cell 161: 1681–1696. Scholar
  49. Raj K, Mufti G (2006) Azacytidine (Vidaza®) in the treatment of myelodysplastic syndromes. Ther Clin Risk Manag 2:377–388. Scholar
  50. Rauch T, Pfeifer G (2010) DNA methylation profiling using the methylated-CpG island recovery assay (MIRA). Methods 52:213–217. Scholar
  51. Robert C, Karaszewska B, Schachter J et al (2015) Improved overall survival in melanoma with combined dabrafenib and trametinib. New Engl J Med 372:30–39. Scholar
  52. Saba H (2007) Decitabine in the treatment of myelodysplastic syndromes. Ther Clin Risk Manag 3(5):807–817PubMedPubMedCentralGoogle Scholar
  53. Segura M, Hanniford D, Menendez S et al (2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci 106: 1814–1819. Scholar
  54. Segura M, Fontanals-Cirera B, Gaziel-Sovran A et al (2013) BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res 73:6264–6276. Scholar
  55. Siegel RL, Miller K, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. Scholar
  56. Sigalotti L, Fratta E, Coral S et al (2004) Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-Aza-2′-deoxycytidine. Cancer Res 64:9167–9171CrossRefGoogle Scholar
  57. Song F, Amos C, Lee J et al (2014) Identification of a melanoma susceptibility locus and somatic mutation in TET2. Carcinogenesis 35:2097–2101. Scholar
  58. Spugnardi M, Tommasi, Dammann R, Pfeifer G, Hoon D (2003) Epigenetic inactivation of RAS association domain family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer Res 63:1639–1643PubMedGoogle Scholar
  59. Steingrimsson E, Copeland N, Jenkins N (2004) Melanocytes and the microthalmia transcription factor network. Annu Rev Genet 38:365–411CrossRefGoogle Scholar
  60. Straume O, Smeds J, Kumar R, Hemminki K, Akslen L (2002) Significant impact of promoter hypermethylation and the 540 C>T polymorphism of CDKN2A in cutaneous melanoma of the vertical growth phase. Am J Pathol 161:229–237CrossRefGoogle Scholar
  61. Strub T, Ghiraldini F, Carcamo S et al (2018) SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling. Nat Commun 9:3440. Scholar
  62. Szyt M, Pakneshan P, Rabbani S (2004) DNA demethylation and cancer: therapeutic implications. Cancer Lett 211:133–143CrossRefGoogle Scholar
  63. Tahiliani M, Koh K, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. Scholar
  64. Tang L, Zhang W, Su B, Yu B (2013) Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. Biomed Res Int 2013:1–7. Scholar
  65. Vardabasso C, Gaspar-Maia A, Hasson D et al (2015) Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol Cell 59:75–88. Scholar
  66. Ward P, Patel J, Wise D et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234. Scholar
  67. Wolchok J, Chiarion-Sileni V, Gonzalez R et al (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. New Engl J Med 377:1345–1356. Scholar
  68. Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30. Scholar
  69. Zakharia Y, Monga V, Swami U et al (2017) Targeting epigenetics for treatment of BRAF mutated metastatic melanoma with decidibine in combination with vemurafenib: a phase 1b study. Oncotarget 8(51):89182–89193. Scholar
  70. Zhang H, Cai K, Wang J et al (2014) MiR-7, inhibited indirectly by LincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells 32:2858–2868. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Stem Cell Program and Division of Hematology/OncologyBoston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical SchoolBostonUSA
  2. 2.Harvard Stem Cell InstituteHarvard UniversityCambridgeUSA

Section editors and affiliations

  • David E. Fisher
    • 1
  • Nick Hayward
    • 2
  • David C. Whiteman
    • 3
  • Keith T. Flaherty
    • 4
  • F. Stephen Hodi
    • 5
    • 6
  • Hensin Tsao
    • 7
    • 8
  • Glenn Merlino
    • 9
  1. 1.Department of Dermatology, Harvard/MGH Cutaneous Biology Research Center, and Melanoma Program, MGH Cancer CenterMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.QIMR Berghofer Medical Research InstituteHerstonAustralia
  3. 3.QIMR Berghofer Medical Research InstituteHerstonAustralia
  4. 4.Henri and Belinda Termeer Center for Targeted TherapiesMGH Cancer CenterCambridgeUSA
  5. 5.FraminghamUSA
  6. 6.Department of Medicine, Brigham and Women's HospitalDana-Farber Cancer InstituteBostonUSA
  7. 7.AuburndaleUSA
  8. 8.Harvard-MIT Health Sciences and TechnologyCambridgeUSA
  9. 9.Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations