Advertisement

Melanoma pp 51-62 | Cite as

Ultraviolet Radiation and Melanoma

  • Thomas M. RüngerEmail author
Reference work entry

Abstract

There is overwhelming epidemiologic, animal model, and molecular evidence that ultraviolet radiation (UVR) is a major pathogenic factor in the development of the most common subtypes of melanoma. Both UVB and UVA induce pyrimidine dimer DNA photoproducts, possibly through different mechanisms, induce mutations (mostly the C → T UV-signature mutation), and contribute to melanoma formation. There is no conclusive evidence that oxidative DNA base modifications play a significant role in melanomagenesis. Sun seeking and artificial tanning are most likely to blame for the steady increases of melanoma incidence over the past decades. Photoprotection can reduce melanoma risk. Education of the public about the dangers of UVR exposure from natural and artificial sources and about effective measures of photoprotection with the goal to modify behavior and to reduce UVR exposure is the best strategy to reverse the increases in melanoma incidence.

Keywords

Ultraviolet radiation (UVR) UVA UVB C → T mutation UV-signature mutation DNA photoproduct 

References

  1. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signature of mutational processes in human cancer. Nature 500:415–421CrossRefGoogle Scholar
  2. Aubert PM, Seibyl JP, Price JL, Harris TS, Filby FM, Jacobe H, Devous MD Sr, Adinoff B (2016) Dopamine efflux in response to ultraviolet radiation in addicted sunbed users. Psychiatry Res 251:7–14CrossRefGoogle Scholar
  3. Autier P, Doré JF, Gefeller O, Cesarini JP, Lejeune F, Koelmel KF, Lienard D, Kleeberg UR (1997) Melanoma risk and residence in sunny areas. EORTC Melanoma Co-operative Group. European Organization for Research and Treatment of Cancer. Br J Cancer 76:1521–1524CrossRefGoogle Scholar
  4. Autier P, Dore JF, Eggermont A, Coebergh JW (2011) Epidemiological evidence that UVA radiation is involved in the genesis of cutaneous melanoma. Curr Opin Oncol 23:189–196CrossRefGoogle Scholar
  5. Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, Kohlmeyer J, Riesenberg S, van den Boorn-Konijnenberg D, Hömig-Hölzel C, Reuten R, Schadow B, Weighardt H, Wenzel D, Helfrich I, Schadendorf D, Bloch W, Bianchi ME, Lugassy C, Barnhill RL, Koch M, Fleischmann BK, Förster I, Kastenmüller W, Kolanus W, Hölzel M, Gaffal E, Tüting T (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507:109–113CrossRefGoogle Scholar
  6. Bastian BC (2014) The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 9:239–271CrossRefGoogle Scholar
  7. Bodekær M, Philipsen PA, Petersen B, Heydenreich J, Wulf HC (2016) Defining “intermittent UVR exposure”. Photochem Photobiol Sci 15:1176–1182CrossRefGoogle Scholar
  8. Boniol M, Autier P, Boyle P, Gandini S (2012) Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. BMJ 345:e4757CrossRefGoogle Scholar
  9. Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossmann D (2003) Apoptosis regulators and responses in human melanocytic and keratinocytic cells. J Invest Dermatol 120:48–55CrossRefGoogle Scholar
  10. Brash DE (2015) UV-signature mutations. Photochem Photobiol 91:15–26CrossRefGoogle Scholar
  11. Brash DE (2016) UV-induced melanin chemiexcitation. A new mode of melanoma pathogenesis. Toxicol Pathol 44:552–554CrossRefGoogle Scholar
  12. Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696CrossRefGoogle Scholar
  13. Courdavault S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2004) Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells. Mutat Res 556:135–142CrossRefGoogle Scholar
  14. De Fabo EC, Noonan FP, Fears T, Merlino G (2004) Ultraviolet B but not ultraviolet a radiation initiates melanoma. Cancer Res 64:6372–6276CrossRefGoogle Scholar
  15. Drobetsky EA, Turcotte J, Châteauneuf A (1995) A role for ultraviolet A in solar mutagenesis. Proc Natl Acad Sci USA 92:2350–2354CrossRefGoogle Scholar
  16. El Ghissassi F, Baan R, Straif K, Grosse Y, Secretan B, Bouvard V, Benbrahamin-Tallaa L, Guha N, Freeman C, Galichet L, Cogliani V (2009) A review of human carcinogens - part D: radiation. Lancet Oncol 10:751–752CrossRefGoogle Scholar
  17. English DR, Armstrong BK (1988) Identifying people at high risk of cutaneous malignant melanoma: results from a case-control study in Western Australia. Br Med J 296:1285–1288CrossRefGoogle Scholar
  18. Facta S, Fusette SS, Bonino A, Anglesio L, d'Amore G (2013) UV emissions from artificial tanning devices and their compliance with the European technical standard. Health Phys 104:385–389CrossRefGoogle Scholar
  19. Fell GL, Robinson KC, Mao J, Woolf CJ, Fisher DE (2014) Skin β-endorphin mediates addiction to UV light. Cell 157:1527–1534CrossRefGoogle Scholar
  20. Gallagher RP, Spinelli JJ, Lee TK (2005) Tanning beds, sunlamps, and risk of cutaneous malignant melanoma. Cancer Epidemiol Biomark Prev 14:562–566CrossRefGoogle Scholar
  21. Gandini S, Autier P, Boniol M (2011) Reviews on sun exposure and artificial light and melanoma. Prog Biophys Mol Biol 107:362–366CrossRefGoogle Scholar
  22. Gerber B, Mathys P, Moser M, Bressoud D, Braun-Fahrländer C (2002) Ultraviolet emission spectra of sunbeds. Photochem Photobiol 76:664–668CrossRefGoogle Scholar
  23. Gilchrest BA, Eller MS, Geller AC, Yaar M (1999) The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 340:1341–1348CrossRefGoogle Scholar
  24. Gordon D, Gillgren P, Eloranta S, Olsson H, Hansson J, Smedby KE (2015) Time trends in incidence of cutaneous melanoma by detailed anatomical location and patterns of ultraviolet radiation exposure: a retrospective population-based study. Melanoma Res 25:348–356CrossRefGoogle Scholar
  25. Green AC, Williams GM, Logan V, Strutton GM (2011) Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol 29:257–263CrossRefGoogle Scholar
  26. Higgins EM, Du Vivier AWP (1992) Possible induction of malignant melanoma by sunbed use. Clin Exp Dermatol 17:357–359CrossRefGoogle Scholar
  27. Hocker T, Tsao H (2007) Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Hum Mutat 28:578–588CrossRefGoogle Scholar
  28. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (2012) A landscape of driver mutations in melanoma. Cell 150:251–263CrossRefGoogle Scholar
  29. Holman CD, Armstrong BK (1984) Cutaneous malignant melanoma and indicators of total accumulated exposure to the sun: an analysis separating histogenic types. J Natl Cancer Inst 73:75–82PubMedGoogle Scholar
  30. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K, Schadendorf D, Kumar R (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961CrossRefGoogle Scholar
  31. Huang FW, Hodis E, MJ X, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339:957–959CrossRefGoogle Scholar
  32. Ikehata H, Nakamura S, Daigaku Y et al (2013) Action spectrum analysis of UVR genotoxicity. J Invest Dermatol 133:1850–1856CrossRefGoogle Scholar
  33. Klug HLP, Tooze JA, Graff-Cherry C, Anver MR, Noonan FP, Fears TR, Tucker MA, De Fabo EC, Glenn Merlino G (2010) Sunscreen prevention of melanoma in man and mouse. Pigment Cell Melanoma Res 23:835–837CrossRefGoogle Scholar
  34. Kollias N, Sayre RM, Zeise L, Chedekel MR (1991) Photoprotection my melanin. J Photochem Photobiol B 9:135–160CrossRefGoogle Scholar
  35. Krauthammer M, Kong Y, Ha BH et al (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44:1006–1014CrossRefGoogle Scholar
  36. Ley RD (1997) Ultraviolet radiation A-induced precursors of cutaneous melanoma in Monodelphis Domestica. Cancer Res 57:3682–3684PubMedGoogle Scholar
  37. Li C, Yin M, Wang LE, Amos CI, Zhu D, Lee JE, Gershenwald JE, Grimm EA, Wei Q (2013) Polymorphisms of nucleotide excision repair genes predict melanoma survival. J Invest Dermatol 133:1813–1821CrossRefGoogle Scholar
  38. Linos E, Swetter SM, Bufler PA, Fine J, Barnhill RL, Berwick M (2009) Increasing burden of melanoma in the United States. J Invest Dermatol 129:1666–1674CrossRefGoogle Scholar
  39. Menzies AM, Haydu LE, Visintin L, Carlino MS, Howle JR, Thompson FJ, Kefford RF, Scolyer RA, Long GV (2012) Distinguishing clinicopathologic features of patients with V600E and V600K BRAF-mutant metastatic melanoma. Clin Cancer Res 18:3242–3249CrossRefGoogle Scholar
  40. Micillo R, Panzella L, Koike K, Monfrecola G, Napolitano A, d'Ischia M (2016) “Fifty shades” of black and red or how carboxyl groups fine tune eumelanin and pheomelanin properties. Int J Mol Sci 17:746CrossRefGoogle Scholar
  41. Mitchell DL, Fernandez AA, Nairn RS, Garcia R, Paniker L, Trono D, Thames HD, Gimenez-Conti I (2010) Ultraviolet a does not induce melanomas in a Xiphophorus hybrid fish model. Proc Natl Acad Sci USA 107:9329–9334CrossRefGoogle Scholar
  42. Nishiura H, Kumagai J, Kashino G, Okada T, Tano K, Watanabe M (2012) The bystander effect is a novel mechanism of UVA-induced melanogenesis. Photochem Photobiol 88:389–397CrossRefGoogle Scholar
  43. Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, Cadet J, Douki T, Mouret S, Tucker MA, Popratiloff A, Merlino G, De Fabo EC (2012) Melanoma induction by ultraviolet a but not ultraviolet B radiation requires melanin pigment. Nat Commun 12:884CrossRefGoogle Scholar
  44. Osterlind A, Tucker MA, Stone BJ, Jensen OM (1988) The Danish case-control study of cutaneous malignant melanoma. II. Importance of UV-light exposure. Photochem Photobiol 88:389–397Google Scholar
  45. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Verela I, Lin ML, Ordonez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196CrossRefGoogle Scholar
  46. Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, Wakamatsu K, Bechara EJ, Halaban R, Douki T, Brash DE (2015) Photochemistry. Chemiexcitation of melanin derivatives induced DNA photoproducts long after UV exposure. Science 347:842–847CrossRefGoogle Scholar
  47. Redmond RW, Rajadurai A, Udayakumar D, Sviderskaya EV, Tsao H (2014) Melanocytes are selectively vulnerable to UVA-mediated bystander oxidative signaling. J Invest Dermatol 134:1083–1090CrossRefGoogle Scholar
  48. Rünger TM (1999) Role of UVA in the pathogenesis of melanoma and non-melanoma skin cancer. A short review. Photodermatol Photoimmunol Photomed 15:212–216CrossRefGoogle Scholar
  49. Rünger TM (2008) C → T transition mutations are not solely UVB-signature mutations, because they are also generated by UVA. J Invest Dermatol 128:2138–2140CrossRefGoogle Scholar
  50. Rünger TM (2011) Is UV-induced mutation formation in melanocytes different from other skin cells? Pigment Cell Melanoma Res 24:10–12CrossRefGoogle Scholar
  51. Rünger TM, Kappes UP (2008) Mechanisms of mutation formation with long-wave ultraviolet light (UVA). Photodermatol Photoimmunol Photomed 24:2–10CrossRefGoogle Scholar
  52. Satagopan JM, Oliveria SA, Arora A, Marchetti MA, Orlow I, Susza SW, Weinstock MA, Scope A, Geller AC, Marghoob A, Halpern AC (2016) Sunburn, sun exposure, and sun sensitivity in the study of nevi in children. Ann Epidemiol 25:839–843CrossRefGoogle Scholar
  53. Setlow RB, Grist E, Thompson K, Woodhead AD (1993) Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci USA 90:6666–6670CrossRefGoogle Scholar
  54. Shain AH, Garrido M, Botton T, Televich E, Yeh I, Sanbom Z, Chung J, Wang NJ, Kakavand NJ, Mann GH, Thompson JF, Wiesner T, Roy R, Olshen AB, Gagnon A, Gray JW, Huh N, Hur JS, Busam KJ, Scolyer RA, Cho RJ, Murali R, Bastian BC (2015) Nat Genet 47:1194–1199CrossRefGoogle Scholar
  55. Stern RS, PUVA Follow Up Study (2001) The risk of melanoma in association with long-term exposure to PUVA. J Am Acad Dermatol 44:755–761CrossRefGoogle Scholar
  56. Thomas NE, Berwick M, Cordeiro-Stone M (2006) Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation? J Invest Dermatol 126:1693–1696CrossRefGoogle Scholar
  57. Tsao H, Chin L, Garraway LA, Fisher DE (2012) Melanoma: from mutation to medicine. Genes Dev 26:1131–1155CrossRefGoogle Scholar
  58. Veierød MB, Weiderpass E, Thörn M, Hansson J, Lund E, Armstrong B, Adami HO (2003) A prospective study of pigmentation, sun exposure, and risk of cutaneous malignant melanoma in women. J Natl Cancer Inst 95:1530–1538CrossRefGoogle Scholar
  59. Vinagre J, Almeida A, Pópulo H, Batista R, Lyra J, Pinto V, Coelho R, Celestino R, Prazeres H, Lima L, Melo M, da Rocha AG, Preto A, Castro P, Castro L, Pardal F, Lopes JM, Santos LL, Reis RM, Cameselle-Teijeiro J, Sobrinho-Simões M, Lima J, Máximo V, Soares P (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4:2185.  https://doi.org/10.1038/ncomms3185CrossRefPubMedGoogle Scholar
  60. Viros A, Sanchez-Laorden B, Pedersen M, Furney SJ, Rae J, Hogan K, Ejiama S, Girotti MR, Cook M, Dhomen N, Marais R (2014) Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 511:478–482CrossRefGoogle Scholar
  61. Wang Y, Digiovanna JJ, Stern JB, Hornyak TJ, Raffeld M, Khan SG, KS O, Hollander MC, Dennis PA, Kraemer KH (2009) Evidence of ultraviolet type mutations in xeroderma pigmentosum melanomas. Proc Natl Acad Sci USA 106:6279–6284CrossRefGoogle Scholar
  62. Wang HT, Choi BC, Tang MS (2010) Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts. Proc Natl Acad Sci USA 107:12180–12185CrossRefGoogle Scholar
  63. Weinstock MA, Colditz GA, Willett WC, Stampfer MJ, Bronstein BR, Mihm MC Jr, Speizer FE (1989) Nonfamilial cutaneous melanoma incidence in women associated with sun exposure before 20 years of age. Pediatrics 84:199–204PubMedGoogle Scholar
  64. Whiteman DC, Pavan WJ, Bastian BC (2011) The melanomas: a synthesis of epidemiological, clinical, histopathological, genetic, and biological aspects, supporting distinct subtypes, causal pathways, and cells of origin. Pigment Cell Melanoma Res 24:879–897CrossRefGoogle Scholar
  65. Zhai S, Yaar M, Doyle SM, Gilchrest BA (1996) Nerve growth factor rescues pigment cells from ultraviolet-induced apoptosis by upregulating BCL-2 levels. Exp Cell Res 224:335–343CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of DermatologyBoston University School of MedicineBostonUSA

Section editors and affiliations

  • David E. Fisher
    • 1
  • Nick Hayward
    • 2
  • David C. Whiteman
    • 3
  • Keith T. Flaherty
    • 4
  • F. Stephen Hodi
    • 5
    • 6
  • Hensin Tsao
    • 7
    • 8
  • Glenn Merlino
    • 9
  1. 1.Department of Dermatology, Harvard/MGH Cutaneous Biology Research Center, and Melanoma Program, MGH Cancer CenterMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.QIMR Berghofer Medical Research InstituteHerstonAustralia
  3. 3.QIMR Berghofer Medical Research InstituteHerstonAustralia
  4. 4.Henri and Belinda Termeer Center for Targeted TherapiesMGH Cancer CenterBostonUSA
  5. 5.FraminghamUSA
  6. 6.Department of Medicine, Brigham and Women's HospitalDana-Farber Cancer InstituteBostonUSA
  7. 7.AuburndaleUSA
  8. 8.Harvard-MIT Health Sciences and TechnologyCambridgeUSA
  9. 9.Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations