Advertisement

Melanoma pp 21-50 | Cite as

The Biology of Pigmentation

  • Allison S. Dobry
  • David E. FisherEmail author
Reference work entry

Abstract

Having roots in the earliest Mendelian experiments, the scientific examination of pigmentation offers the unique opportunity to better understand the contributions of genetics, signaling pathways, hormones, and the external environment on the phenotype of our body’s largest organ system: the skin. Epidermal pigmentation is a product of the genetically determined melanin content, the cellular response to external stimuli, and the individual capacity for tanning. These processes are dependent upon a functional pigmentation pathway, which requires proper melanocyte migration, adequate melanogenic enzyme activity, and correct packaging and transfer of melanin to neighboring cells. Disruption of any of these processes leads to alterations in pigmentation. Although cutaneous pigmentation is most heavily focused upon, information about pigment patterning can also be gleaned from other pigmented tissues, including the hair and eyes. Numerous molecular signaling pathways and hormone systems converge to modulate pigment at the cellular level, which further contribute to the overall phenotype. These systems acquire greater importance when considered in the context of melanoma development, as these pathways are frequently found to be dysregulated.

Keywords

Pigmentation Melanocyte MC1R MITF Melanocyte stem cells Tanning Melanin Ultraviolet 

Notes

Acknowledgment

The authors acknowledge the numerous outstanding researchers who have contributed to our understanding of melanocyte biology and whose work has not been fully cited due to space constraints. The authors also acknowledge grant support from NIH (5P01 CA163222-04; 5R01 AR043369-19; 5R01CA178315-02), the Melanoma Research Alliance, and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

References

  1. Ancans J, Tobin DJ, Hoogduijn MJ, Smit NP, Wakamatsu K, Thody AJ (2001) Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanoma cells. Exp Cell Res 268(1):26–35.  https://doi.org/10.1006/excr.2001.5251CrossRefPubMedGoogle Scholar
  2. Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63(1–3):8–18CrossRefGoogle Scholar
  3. Astner S, Anderson RR (2004) Skin phototypes 2003. J Invest Dermatol 122(2):xxx–xxxiCrossRefGoogle Scholar
  4. Barnetson RS, Ooi TK, Zhuang L, Halliday GM, Reid CM, Walker PC, … Kleinig MJ (2006) [Nle4-D-Phe7]-alpha-melanocyte-stimulating hormone significantly increased pigmentation and decreased UV damage in fair-skinned Caucasian volunteers. J Invest Dermatol 126(8):1869–1878.  https://doi.org/10.1038/sj.jid.5700317CrossRefGoogle Scholar
  5. Brenner M, Hearing VJ (2008) The protective role of melanin against UV damage in human skin. Photochem Photobiol 84(3):539–549.  https://doi.org/10.1111/j.1751-1097.2007.00226.xCrossRefPubMedPubMedCentralGoogle Scholar
  6. Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, Nix MA, … Barsh GS (2007) A β-defensin mutation causes black coat color in domestic dogs. Science 318(5855):1418–1423.  https://doi.org/10.1126/science.1147880CrossRefGoogle Scholar
  7. Chen CT, Chuang C, Cao J, Ball V, Ruch D, Buehler MJ (2014a) Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin. Nat Commun 5:3859.  https://doi.org/10.1038/ncomms4859CrossRefPubMedGoogle Scholar
  8. Chen H, Weng QY, Fisher DE (2014b) UV signaling pathways within the skin. J Invest Dermatol 134(8): 2080–2085.  https://doi.org/10.1038/jid.2014.161CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cui R, Widlund HR, Feige E, Lin JY, Wilensky DL, Igras VE, … Fisher DE (2007) Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128(5):853–864.  https://doi.org/10.1016/j.cell.2006.12.045CrossRefGoogle Scholar
  10. D’Orazio JA, Nobuhisa T, Cui R, Arya M, Spry M, Wakamatsu K, … Fisher DE (2006) Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature 443(7109): 340–344.  https://doi.org/10.1038/nature05098CrossRefGoogle Scholar
  11. Deng Y, Ediriwickrema A, Yang F, Lewis J, Girardi M, Saltzman WM (2015) A sunblock based on bioadhesive nanoparticles. Nat Mater 14(12): 1278–1285.  https://doi.org/10.1038/nmat4422CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dennis LK, Vanbeek MJ, Beane Freeman LE, Smith BJ, Dawson DV, Coughlin JA (2008) Sunburns and risk of cutaneous melanoma: does age matter? A comprehensive meta-analysis. Ann Epidemiol 18(8):614–627.  https://doi.org/10.1016/j.annepidem.2008.04.006CrossRefPubMedPubMedCentralGoogle Scholar
  13. Faas L, Venkatasamy R, Hider RC, Young AR, Soumyanath A (2008) In vivo evaluation of piperine and synthetic analogues as potential treatments for vitiligo using a sparsely pigmented mouse model. Br J Dermatol 158(5):941–950.  https://doi.org/10.1111/j.1365-2133.2008.08464.xCrossRefPubMedGoogle Scholar
  14. Gallagher RP, Rivers JK, Lee TK, Bajdik CD, McLean DI, Coldman AJ (2000) Broad-spectrum sunscreen use and the development of new nevi in white children: a randomized controlled trial. JAMA 283(22):2955–2960CrossRefGoogle Scholar
  15. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, … Sellers WR (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122.  https://doi.org/10.1038/nature03664CrossRefGoogle Scholar
  16. Green AC, Williams GM, Logan V, Strutton GM (2011) Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol 29(3):257–263.  https://doi.org/10.1200/JCO.2010.28.7078CrossRefPubMedPubMedCentralGoogle Scholar
  17. Grønskov K, Ek J, Brondum-Nielsen K (2007) Oculocutaneous albinism. Orphanet J Rare Dis 2(2):43CrossRefGoogle Scholar
  18. Han J, Cox DG, Colditz GA, Hunter DJ (2006) The p53 codon 72 polymorphism, sunburns, and risk of skin cancer in US Caucasian women. Mol Carcinog 45(9):694–700.  https://doi.org/10.1002/mc.20190CrossRefPubMedGoogle Scholar
  19. Hida T, Wakamatsu K, Sviderskaya EV, Donkin AJ, Montoliu L, Lynn Lamoreux M, … Bennett DC (2009) Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway. Pigment Cell Melanoma Res 22(5):623–634.  https://doi.org/10.1111/j.1755-148X.2009.00582.xCrossRefGoogle Scholar
  20. Hirobe T (2011) How are proliferation and differentiation of melanocytes regulated? Pigment Cell Melanoma Res 24(3):462–478.  https://doi.org/10.1111/j.1755-148X.2011.00845.xCrossRefPubMedGoogle Scholar
  21. Hocker TL, Singh MK, Tsao H (2008) Melanoma genetics and therapeutic approaches in the twenty-first century: moving from the benchside to the bedside. J Invest Dermatol 128(11):2575–2595CrossRefGoogle Scholar
  22. Hsiao JJ, Fisher DE (2014) The roles of microphthalmia-associated transcription factor and pigmentation in melanoma. Arch Biochem Biophys 563:28–34CrossRefGoogle Scholar
  23. Kondo T, Hearing VJ (2011) Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Rev Dermatol 6(1):97–108.  https://doi.org/10.1586/edm.10.70CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lamoreux ML, Wakamatsu K, Ito S (2001) Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res 14:23–31CrossRefGoogle Scholar
  25. Langendonk JG, Balwani M, Anderson KE, Bonkovsky HL, Anstey AV, Bissell DM, … Desnick RJ (2015) Afamelanotide for erythropoietic protoporphyria. N Engl J Med 373(1):48–59.  https://doi.org/10.1056/NEJMoa1411481CrossRefGoogle Scholar
  26. Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12(9):406–414.  https://doi.org/10.1016/j.molmed.2006.07.008CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445(7130):843–850.  https://doi.org/10.1038/nature05660CrossRefPubMedGoogle Scholar
  28. Maresca V, Flori E, Picardo M (2015) Skin phototype: a new perspective. Pigment Cell Melanoma Res 28(4): 378–389.  https://doi.org/10.1111/pcmr.12365CrossRefPubMedGoogle Scholar
  29. Miller AJ, Tsao H (2010) New insights into pigmentary pathways and skin cancer. Br J Dermatol 162(1):22–28.  https://doi.org/10.1111/j.1365-2133.2009.09565.xCrossRefPubMedGoogle Scholar
  30. Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, … Fisher DE (2012) An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491(7424):449–453.  https://doi.org/10.1038/nature11624CrossRefGoogle Scholar
  31. Morgan AM, Lo J, Fisher DE (2013) How does pheomelanin synthesis contribute to melanomagenesis?: two distinct mechanisms could explain the carcinogenicity of pheomelanin synthesis. BioEssays 35(8):672–676.  https://doi.org/10.1002/bies.201300020CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mort RL, Jackson IJ, Patton EE (2015) The melanocyte lineage in development and disease. Development 142(7):1387.  https://doi.org/10.1242/dev.123729CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nan H, Qureshi AA, Hunter DJ, Han J (2008) Interaction between p53 codon 72 polymorphism and melanocortin 1 receptor variants on suntan response and cutaneous melanoma risk. Br J Dermatol 159(2):314–321.  https://doi.org/10.1111/j.1365-2133.2008.08624.xCrossRefPubMedPubMedCentralGoogle Scholar
  34. Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, … Nishikawa S (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416(6883):854–860.  https://doi.org/10.1038/416854aCrossRefGoogle Scholar
  35. Nishimura EK, Granter SR, Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307(5710):720–724.  https://doi.org/10.1126/science.1099593CrossRefPubMedGoogle Scholar
  36. Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, … De Fabo EC (2012) Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun 3:884.  https://doi.org/10.1038/ncomms1893
  37. Panzella L, Leone L, Greco G, Vitiello G, D’Errico G, Napolitano A, d’Ischia M (2014) Red human hair pheomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanomagenesis. Pigment Cell Melanoma Res 27(2): 244–252.  https://doi.org/10.1111/pcmr.12199CrossRefPubMedGoogle Scholar
  38. Pontén F, Berne B, Ren ZP, Nistér M, Pontén J (1995) Ultraviolet light induces expression of p53 and p21 in human skin: effect of sunscreen and constitutive p21 expression in skin appendages. J Invest Dermatol 105(3):402–406CrossRefGoogle Scholar
  39. Premi S, Wallisch S, Mano CM, Weiner AB, Bacchiocchi A, Wakamatsu K, … Brash DE (2015) Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347(6224):842–847.  https://doi.org/10.1126/science.1256022CrossRefGoogle Scholar
  40. Roider EM, Fisher DE (2016) Red hair, light skin, and UV-independent risk for melanoma development in humans. JAMA Dermatol.  https://doi.org/10.1001/jamadermatol.2016.0524CrossRefGoogle Scholar
  41. Sayre RM, Dowdy JC, Gerwig AJ, Shields WJ, Lloyd RV (2005) Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone. Photochem Photobiol 81(2):452–456.  https://doi.org/10.1562/2004-02-12-RA-083CrossRefPubMedGoogle Scholar
  42. Schneider MR, Schmidt-Ullrich R, Paus R (2009) The hair follicle as a dynamic miniorgan. Curr Biol 19(3):R132–R142.  https://doi.org/10.1016/j.cub.2008.12.005CrossRefPubMedGoogle Scholar
  43. Seo K, Mohanty TR, Choi T, Hwang I (2007) Biology of epidermal and hair pigmentation in cattle: a mini-review. Vet Dermatol 18(6):392–400CrossRefGoogle Scholar
  44. Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84(4):1155–1228.  https://doi.org/10.1152/physrev.00044.2003CrossRefPubMedGoogle Scholar
  45. Slominski A, Wortsman J, Plonka PM, Schallreuter KU, Paus R, Tobin DJ (2005) Hair follicle pigmentation. J Invest Dermatol 124(1):13–21.  https://doi.org/10.1111/j.0022-202X.2004.23528.xCrossRefPubMedPubMedCentralGoogle Scholar
  46. Soumyanath A, Venkatasamy R, Joshi M, Faas L, Adejuyigbe B, Drake AF, … Young AR (2006) UV irradiation affects melanocyte stimulatory activity and protein binding of piperine. Photochem Photobiol 82(6):1541–1548CrossRefGoogle Scholar
  47. Steingrímsson E, Copeland NG, Jenkins NA (2005) Melanocyte stem cell maintenance and hair graying. Cell 121(1):9–12.  https://doi.org/10.1016/j.cell.2005.03.021CrossRefPubMedGoogle Scholar
  48. Sturm RA, Larsson M (2009) Genetics of human iris colour and patterns. Pigment Cell Melanoma Res 22(5):544–562.  https://doi.org/10.1111/j.1755-148X.2009.00606.xCrossRefPubMedGoogle Scholar
  49. Tarafder AK, Bolasco G, Correia MS, Pereira FJ, Iannone L, Hume AN, … Seabra MC (2014) Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis. J Invest Dermatol 134(4):1056–1066.  https://doi.org/10.1038/jid.2013.432CrossRefGoogle Scholar
  50. Thody AJ, Higgins EM, Wakamatsu K, Ito S, Burchill SA, Marks JM (1991) Pheomelanin as well as eumelanin is present in human epidermis. J Invest Dermatol 97(2):340–344CrossRefGoogle Scholar
  51. Tobin DJ, Paus R (2001) Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol 36(1):29–54CrossRefGoogle Scholar
  52. Walker WP, Gunn TM (2010) Shades of meaning: the pigment-type switching system as a tool for discovery. Pigment Cell Melanoma Res 23(4):485–495.  https://doi.org/10.1111/j.1755-148X.2010.00721.xCrossRefPubMedGoogle Scholar
  53. Weiner L, Han R, Scicchitano BM, Li J, Hasegawa K, Grossi M, … Brissette JL (2007) Dedicated epithelial recipient cells determine pigmentation patterns. Cell 130(5):932–942.  https://doi.org/10.1016/j.cell.2007.07.024CrossRefGoogle Scholar
  54. Wendt J, Rauscher S, Burgstaller-Muehlbacher S, Fae I, Fischer G, Pehamberger H, Okamoto I (2016) Human determinants and the role of melanocortin-1 receptor variants in melanoma risk independent of UV radiation exposure. JAMA Dermatol.  https://doi.org/10.1001/jamadermatol.2016.0050CrossRefGoogle Scholar
  55. Wu X, Hammer JA (2014) Melanosome transfer: it is best to give and receive. Curr Opin Cell Biol 29:1–7.  https://doi.org/10.1016/j.ceb.2014.02.003CrossRefPubMedGoogle Scholar
  56. Zhang H, Li J, Luo H, Chen H, Mei L, He C, … Feng Y (2013) Studies on pathogenesis of Waardenburg syndrome type II and Tietz syndrome resulting from MITF gene mutations. J Otol 8:97–102Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Dermatology, Harvard/MGH Cutaneous Biology Research Center, and Melanoma Program, MGH Cancer CenterMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Section editors and affiliations

  • David E. Fisher
    • 1
  • Nick Hayward
    • 2
  • David C. Whiteman
    • 3
  • Keith T. Flaherty
    • 4
  • F. Stephen Hodi
    • 5
    • 6
  • Hensin Tsao
    • 7
    • 8
  • Glenn Merlino
    • 9
  1. 1.Department of Dermatology, Harvard/MGH Cutaneous Biology Research Center, and Melanoma Program, MGH Cancer CenterMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.QIMR Berghofer Medical Research InstituteHerstonAustralia
  3. 3.QIMR Berghofer Medical Research InstituteHerstonAustralia
  4. 4.Henri and Belinda Termeer Center for Targeted TherapiesMGH Cancer CenterBostonUSA
  5. 5.FraminghamUSA
  6. 6.Department of Medicine, Brigham and Women's HospitalDana-Farber Cancer InstituteBostonUSA
  7. 7.AuburndaleUSA
  8. 8.Harvard-MIT Health Sciences and TechnologyCambridgeUSA
  9. 9.Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations