Skip to main content

Brain-Machine Interface: Overview

  • Reference work entry
  • First Online:
  • 526 Accesses

Synonyms

Brain-computer interfaces; Neural interfaces

Definition

A brain-machine interface (BMI) is a direct communication pathway between the nervous system and a man-made computing device. This communication is unidirectional in BMIs that either record neural activity in the nervous system to affect the state of an external device or stimulate neural activity to affect the state of the nervous system. It can also be bidirectional, such as BMIs that record activity from certain parts of the nervous system and use this activity – or features extracted from it – in real time to stimulate activity in other parts of that system. This communication can occur at multiple levels, which may include muscles, peripheral nerves, spinal cord, or the brain.

Detailed Description

BMIs fundamentally rely on the concept of causation between electricity and movement or between electricity and cognition. The causal link between electrical current injection into the body and movement of parts of that...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AP:

Action potentials

BCI:

Brain-computer interfaces

BMI:

Brain-machine interface

ECoG:

Electrocorticogram

EEG:

Electroencephalogram

EMG:

Electromyogram

FES:

Functional electrical stimulation

LTD:

Long-term depression

LTP:

Long-term potentiation

MIMO:

Multi-input multi-output

NI:

Neural interfaces

SCI:

Spinal cord injury

SISO:

Single-input single-output

References

  • Adrian ED, Bronk DW (1928) The discharge of impulses in motor nerve fibres: part I. Impulses in single fibres of the phrenic nerve. J Physiol 66:81–101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Afshar P, Khambhati A, Stanslaski S, Carlson D, Jensen R, Linde D et al (2012) A translational platform for prototyping closed-loop neuromodulation systems. Front Neural Circuit 6:117

    Google Scholar 

  • Badreldin I, Sutherland J, Vaidya M, Elerya A, Balasubramanian K, Fagg A, et al. (2013) Unsupervised decoder initialization for brain-machine interfaces using neural state space dynamics. Presented at the IEEE international conference on neural engineering, San Diego, 2013

    Google Scholar 

  • Berg JA, Dammann JF 3rd, Tenore FV, Tabot GA, Boback JL, Manfredi LR et al (2013) Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 21:500–507

    CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    CAS  PubMed  Google Scholar 

  • Boon P, Raedt R, de Herdt V, Wyckhuys T, Vonck K (2009) Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 6:218–227

    PubMed  Google Scholar 

  • Carlson D, Linde D, Isaacson B, Afshar P, Bourget D, Stanslaski S et al (2013) A flexible algorithm framework for closed-loop neuromodulation research systems. Conf Proc IEEE Eng Med Biol Soc 2013:6146–6150

    PubMed  Google Scholar 

  • Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI et al (2012) Neural population dynamics during reaching. Nature 487:51–56

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coffey RJ (2009) Deep brain stimulation devices: a brief technical history and review. Artif Organs 33:208–220

    PubMed  Google Scholar 

  • Daly J, Liu J, Aghagolzadeh M, Oweiss K (2012) Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces. J Neural Eng 9:065004

    PubMed  Google Scholar 

  • de Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A et al (2008) Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci 49:2303–2314

    PubMed Central  PubMed  Google Scholar 

  • Drake KL, Wise KD, Farraye J, Anderson DJ, BeMent SL (1988) Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. Biomed Eng IEEE Trans 35:719–732

    CAS  Google Scholar 

  • Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485:368–371

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958

    CAS  PubMed  Google Scholar 

  • Fowler R, Galvani L (1793) Experiments and observations relative to the influence lately discovered by M. Galvani and commonly called animal electricity. Printed for T. Duncan: etc, Edinburgh

    Google Scholar 

  • Fritsch G, Hitzig E (1870) Ueber die elekrtische erregbarkeit des gross-hirns. Arch Anat Physiol 37:300–332

    Google Scholar 

  • Galvani L (1791) D viribus electricitatis in motu musculari: Commentarius. Tip. Istituto delle Scienze, Bologna, 58 p: 4 tavv. ft; in 4.; DCC. f. 70, vol 1

    Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    CAS  PubMed  Google Scholar 

  • Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM et al (2012) A high-performance neural prosthesis enabled by control algorithm design. Nat Neurosci 15:1752–1757

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goodman WK, Foote KD, Greenberg BD, Ricciuti N, Bauer R, Ward H et al (2010) Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design. Biol Psychiatry 67:535–542

    PubMed  Google Scholar 

  • Hajcak G, Anderson BS, Arana A, Borckardt J, Takacs I, George MS et al (2010) Dorsolateral prefrontal cortex stimulation modulates electrocortical measures of visual attention: evidence from direct bilateral epidural cortical stimulation in treatment-resistant mood disorder. Neuroscience 170:281–288

    CAS  PubMed  Google Scholar 

  • Halpern CH, Samadani U, Litt B, Jaggi JL, Baltuch GH (2008) Deep brain stimulation for epilepsy. Neurotherapeutics 5:59–67

    PubMed Central  PubMed  Google Scholar 

  • Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA et al (2013) Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 10:066013

    PubMed Central  PubMed  Google Scholar 

  • Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y et al (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947

    PubMed Central  PubMed  Google Scholar 

  • Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375

    PubMed Central  CAS  PubMed  Google Scholar 

  • House WF, Urban J (1973) Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann Otol Rhinol Laryngol 82:504–517

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson A, Mavoori J, Fetz EE (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444:56–60

    CAS  PubMed  Google Scholar 

  • Jones N (2010) Epilepsy: DBS reduces seizure frequency in refractory epilepsy. Nat Rev Neurol 6:238

    PubMed  Google Scholar 

  • Kalman RE (1965) Irreducible realizations and the degree of a rational matrix. J Soc Ind Appl Math 13:520–544

    Google Scholar 

  • Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M (2009) Local origin of field potentials in visual cortex. Neuron 61:35–41

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koester HJ, Sakmann B (2000) Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J Physiol 529 Pt 3:625–646

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuncel AM, Cooper SE, Wolgamuth BR, Clyde MA, Snyder SA, Montgomery EB Jr et al (2006) Clinical response to varying the stimulus parameters in deep brain stimulation for essential tremor. Mov Disord 21:1920–1928

    PubMed  Google Scholar 

  • Kuncel AM, Cooper SE, Grill WM (2008) A method to estimate the spatial extent of activation in thalamic deep brain stimulation. Clin Neurophysiol 119:2148–2158

    PubMed Central  PubMed  Google Scholar 

  • Liu J, Khalil H, Oweiss K (2010) Feedback control of the spatiotemporal firing pattern of a basal ganglia microcircuit model. In: Computational neuroscience, San Antonio

    Google Scholar 

  • Liu JB, Khalil HK, Oweiss KG (2011) Neural feedback for instantaneous spatiotemporal modulation of afferent pathways in bi-directional brain-machine interfaces. IEEE Trans Neural Syst Rehabil Eng 19:521–533

    PubMed  Google Scholar 

  • Lucas TH, Fetz EE (2009) Motor cortex plasticity driven by artificial feedback from an autonomous, closed-loop neural implant. Neurosurgery 65:420–421

    Google Scholar 

  • Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN et al (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65:267–275

    PubMed Central  PubMed  Google Scholar 

  • Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660

    CAS  PubMed  Google Scholar 

  • McFarland DJ, Sarnacki WA, Vaughan TM, Wolpaw JR (2005) Brain-computer interface (BCI) operation: signal and noise during early training sessions. Clin Neurophysiol 116:56–62

    PubMed  Google Scholar 

  • McNaughton BL, O'Keefe J, Barnes CA (1983) The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods 8:391–397

    CAS  PubMed  Google Scholar 

  • Micera S, Navarro X (2009) Bidirectional interfaces with the peripheral nervous system. Int Rev Neurobiol 86:23–38

    PubMed  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100

    CAS  PubMed  Google Scholar 

  • Mohr P (2008) Deep brain stimulation in psychiatry. Neuro Endocrinol Lett 29(Suppl 1):123–132

    PubMed  Google Scholar 

  • Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–642

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moritz CT, Lucas TH, Perlmutter SI, Fetz EE (2007) Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys. J Neurophysiol 97:110–120

    PubMed  Google Scholar 

  • Morrell MJ, R. N. S. S. i. E. S. Group (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77:1295–1304

    PubMed  Google Scholar 

  • Nagel SJ, Najm IM (2009) Deep brain stimulation for epilepsy. Neuromodulation 12:270–280

    PubMed  Google Scholar 

  • Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10:229–258

    PubMed  Google Scholar 

  • Nicolelis MAL (1999) Methods for neural ensemble recordings. CRC Press, Boca Raton

    Google Scholar 

  • Normann R, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39:2577–2587

    CAS  PubMed  Google Scholar 

  • O’Keefe J (1979) A review of the hippocampal place cells. Prog Neurobiol 13:419–439

    PubMed  Google Scholar 

  • Oweiss K (2010) Statistical signal processing for neuroscience and neurotechnology, 1st edn. Academic/Elsevier, Burlington

    Google Scholar 

  • Ranck JB Jr (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats: part I. Behavioral correlates and firing repertoires. Exp Neurol 41:462–531

    Google Scholar 

  • Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G et al (2014) Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med 6:222ra19

    PubMed  Google Scholar 

  • Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z et al (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72:370–384

    CAS  PubMed  Google Scholar 

  • Schiff N, Giacino J, Kalmar K, Victor J, Baker K, Gerber M et al (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603

    CAS  PubMed  Google Scholar 

  • Shanechi MM, Hu RC, Williams ZM (2014) A cortical–spinal prosthesis for targeted limb movement in paralysed primate avatars. Nat Commun 5:3237

    PubMed Central  PubMed  Google Scholar 

  • Sitaram R, Caria A, Birbaumer N (2009) Hemodynamic brain–computer interfaces for communication and rehabilitation. Neural Netw 22:1320–1328

    PubMed  Google Scholar 

  • Song D, Chan RHM, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2007) Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. Biomed Eng IEEE Trans 54:1053–1066

    Google Scholar 

  • Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci 100:7319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ et al (2013) Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci U S A 110:18279–18284

    PubMed Central  CAS  PubMed  Google Scholar 

  • Theodore WH, Fisher R (2007) Brain stimulation for epilepsy. Acta Neurochir Suppl 97:261–272

    CAS  PubMed  Google Scholar 

  • Thongpang S, Richner TJ, Brodnick SK, Schendel A, Kim J, Wilson JA et al (2011) A micro-electrocorticography platform and deployment strategies for chronic BCI applications. Clin EEG Neurosci 42:259–265

    PubMed Central  PubMed  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    PubMed  Google Scholar 

  • Yeckel MF, Berger TW (1990) Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci U S A 87:5832–5836

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim G. Oweiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Oweiss, K.G. (2015). Brain-Machine Interface: Overview. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_783

Download citation

Publish with us

Policies and ethics