Encyclopedia of Computational Neuroscience

2015 Edition
| Editors: Dieter Jaeger, Ranu Jung

Brain-Machine Interface: Overview

  • Karim G. Oweiss
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6675-8_783



A brain-machine interface (BMI) is a direct communication pathway between the nervous system and a man-made computing device. This communication is unidirectional in BMIs that either record neural activity in the nervous system to affect the state of an external device or stimulate neural activity to affect the state of the nervous system. It can also be bidirectional, such as BMIs that record activity from certain parts of the nervous system and use this activity – or features extracted from it – in real time to stimulate activity in other parts of that system. This communication can occur at multiple levels, which may include muscles, peripheral nerves, spinal cord, or the brain.

Detailed Description

BMIs fundamentally rely on the concept of causation between electricity and movement or between electricity and cognition. The causal link between electrical current injection into the body and movement of parts of that...

This is a preview of subscription content, log in to check access.


  1. Adrian ED, Bronk DW (1928) The discharge of impulses in motor nerve fibres: part I. Impulses in single fibres of the phrenic nerve. J Physiol 66:81–101PubMedCentralPubMedGoogle Scholar
  2. Afshar P, Khambhati A, Stanslaski S, Carlson D, Jensen R, Linde D et al (2012) A translational platform for prototyping closed-loop neuromodulation systems. Front Neural Circuit 6:117Google Scholar
  3. Badreldin I, Sutherland J, Vaidya M, Elerya A, Balasubramanian K, Fagg A, et al. (2013) Unsupervised decoder initialization for brain-machine interfaces using neural state space dynamics. Presented at the IEEE international conference on neural engineering, San Diego, 2013Google Scholar
  4. Berg JA, Dammann JF 3rd, Tenore FV, Tabot GA, Boback JL, Manfredi LR et al (2013) Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 21:500–507PubMedGoogle Scholar
  5. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedGoogle Scholar
  6. Boon P, Raedt R, de Herdt V, Wyckhuys T, Vonck K (2009) Electrical stimulation for the treatment of epilepsy. Neurotherapeutics 6:218–227PubMedGoogle Scholar
  7. Carlson D, Linde D, Isaacson B, Afshar P, Bourget D, Stanslaski S et al (2013) A flexible algorithm framework for closed-loop neuromodulation research systems. Conf Proc IEEE Eng Med Biol Soc 2013:6146–6150PubMedGoogle Scholar
  8. Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI et al (2012) Neural population dynamics during reaching. Nature 487:51–56PubMedCentralPubMedGoogle Scholar
  9. Coffey RJ (2009) Deep brain stimulation devices: a brief technical history and review. Artif Organs 33:208–220PubMedGoogle Scholar
  10. Daly J, Liu J, Aghagolzadeh M, Oweiss K (2012) Optimal space-time precoding of artificial sensory feedback through mutichannel microstimulation in bi-directional brain-machine interfaces. J Neural Eng 9:065004PubMedGoogle Scholar
  11. de Balthasar C, Patel S, Roy A, Freda R, Greenwald S, Horsager A et al (2008) Factors affecting perceptual thresholds in epiretinal prostheses. Invest Ophthalmol Vis Sci 49:2303–2314PubMedCentralPubMedGoogle Scholar
  12. Drake KL, Wise KD, Farraye J, Anderson DJ, BeMent SL (1988) Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. Biomed Eng IEEE Trans 35:719–732Google Scholar
  13. Ethier C, Oby ER, Bauman MJ, Miller LE (2012) Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485:368–371PubMedCentralPubMedGoogle Scholar
  14. Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958PubMedGoogle Scholar
  15. Fowler R, Galvani L (1793) Experiments and observations relative to the influence lately discovered by M. Galvani and commonly called animal electricity. Printed for T. Duncan: etc, EdinburghGoogle Scholar
  16. Fritsch G, Hitzig E (1870) Ueber die elekrtische erregbarkeit des gross-hirns. Arch Anat Physiol 37:300–332Google Scholar
  17. Galvani L (1791) D viribus electricitatis in motu musculari: Commentarius. Tip. Istituto delle Scienze, Bologna, 58 p: 4 tavv. ft; in 4.; DCC. f. 70, vol 1Google Scholar
  18. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419PubMedGoogle Scholar
  19. Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM et al (2012) A high-performance neural prosthesis enabled by control algorithm design. Nat Neurosci 15:1752–1757PubMedCentralPubMedGoogle Scholar
  20. Goodman WK, Foote KD, Greenberg BD, Ricciuti N, Bauer R, Ward H et al (2010) Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design. Biol Psychiatry 67:535–542PubMedGoogle Scholar
  21. Hajcak G, Anderson BS, Arana A, Borckardt J, Takacs I, George MS et al (2010) Dorsolateral prefrontal cortex stimulation modulates electrocortical measures of visual attention: evidence from direct bilateral epidural cortical stimulation in treatment-resistant mood disorder. Neuroscience 170:281–288PubMedGoogle Scholar
  22. Halpern CH, Samadani U, Litt B, Jaggi JL, Baltuch GH (2008) Deep brain stimulation for epilepsy. Neurotherapeutics 5:59–67PubMedCentralPubMedGoogle Scholar
  23. Hampson RE, Song D, Opris I, Santos LM, Shin DC, Gerhardt GA et al (2013) Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing. J Neural Eng 10:066013PubMedCentralPubMedGoogle Scholar
  24. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y et al (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947PubMedCentralPubMedGoogle Scholar
  25. Hebb DO (1949) The organization of behavior; a neuropsychological theory. Wiley, New YorkGoogle Scholar
  26. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375PubMedCentralPubMedGoogle Scholar
  27. House WF, Urban J (1973) Long term results of electrode implantation and electronic stimulation of the cochlea in man. Ann Otol Rhinol Laryngol 82:504–517PubMedGoogle Scholar
  28. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106PubMedCentralPubMedGoogle Scholar
  29. Jackson A, Mavoori J, Fetz EE (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444:56–60PubMedGoogle Scholar
  30. Jones N (2010) Epilepsy: DBS reduces seizure frequency in refractory epilepsy. Nat Rev Neurol 6:238PubMedGoogle Scholar
  31. Kalman RE (1965) Irreducible realizations and the degree of a rational matrix. J Soc Ind Appl Math 13:520–544Google Scholar
  32. Katzner S, Nauhaus I, Benucci A, Bonin V, Ringach DL, Carandini M (2009) Local origin of field potentials in visual cortex. Neuron 61:35–41PubMedCentralPubMedGoogle Scholar
  33. Koester HJ, Sakmann B (2000) Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J Physiol 529 Pt 3:625–646PubMedCentralPubMedGoogle Scholar
  34. Kuncel AM, Cooper SE, Wolgamuth BR, Clyde MA, Snyder SA, Montgomery EB Jr et al (2006) Clinical response to varying the stimulus parameters in deep brain stimulation for essential tremor. Mov Disord 21:1920–1928PubMedGoogle Scholar
  35. Kuncel AM, Cooper SE, Grill WM (2008) A method to estimate the spatial extent of activation in thalamic deep brain stimulation. Clin Neurophysiol 119:2148–2158PubMedCentralPubMedGoogle Scholar
  36. Liu J, Khalil H, Oweiss K (2010) Feedback control of the spatiotemporal firing pattern of a basal ganglia microcircuit model. In: Computational neuroscience, San AntonioGoogle Scholar
  37. Liu JB, Khalil HK, Oweiss KG (2011) Neural feedback for instantaneous spatiotemporal modulation of afferent pathways in bi-directional brain-machine interfaces. IEEE Trans Neural Syst Rehabil Eng 19:521–533PubMedGoogle Scholar
  38. Lucas TH, Fetz EE (2009) Motor cortex plasticity driven by artificial feedback from an autonomous, closed-loop neural implant. Neurosurgery 65:420–421Google Scholar
  39. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN et al (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65:267–275PubMedCentralPubMedGoogle Scholar
  40. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660PubMedGoogle Scholar
  41. McFarland DJ, Sarnacki WA, Vaughan TM, Wolpaw JR (2005) Brain-computer interface (BCI) operation: signal and noise during early training sessions. Clin Neurophysiol 116:56–62PubMedGoogle Scholar
  42. McNaughton BL, O'Keefe J, Barnes CA (1983) The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods 8:391–397PubMedGoogle Scholar
  43. Micera S, Navarro X (2009) Bidirectional interfaces with the peripheral nervous system. Int Rev Neurobiol 86:23–38PubMedGoogle Scholar
  44. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65:37–100PubMedGoogle Scholar
  45. Mohr P (2008) Deep brain stimulation in psychiatry. Neuro Endocrinol Lett 29(Suppl 1):123–132PubMedGoogle Scholar
  46. Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–642PubMedCentralPubMedGoogle Scholar
  47. Moritz CT, Lucas TH, Perlmutter SI, Fetz EE (2007) Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys. J Neurophysiol 97:110–120PubMedGoogle Scholar
  48. Morrell MJ, R. N. S. S. i. E. S. Group (2011) Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology 77:1295–1304PubMedGoogle Scholar
  49. Nagel SJ, Najm IM (2009) Deep brain stimulation for epilepsy. Neuromodulation 12:270–280PubMedGoogle Scholar
  50. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10:229–258PubMedGoogle Scholar
  51. Nicolelis MAL (1999) Methods for neural ensemble recordings. CRC Press, Boca RatonGoogle Scholar
  52. Normann R, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vision Res 39:2577–2587PubMedGoogle Scholar
  53. O’Keefe J (1979) A review of the hippocampal place cells. Prog Neurobiol 13:419–439PubMedGoogle Scholar
  54. Oweiss K (2010) Statistical signal processing for neuroscience and neurotechnology, 1st edn. Academic/Elsevier, BurlingtonGoogle Scholar
  55. Ranck JB Jr (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats: part I. Behavioral correlates and firing repertoires. Exp Neurol 41:462–531Google Scholar
  56. Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G et al (2014) Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci Transl Med 6:222ra19PubMedGoogle Scholar
  57. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z et al (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72:370–384PubMedGoogle Scholar
  58. Schiff N, Giacino J, Kalmar K, Victor J, Baker K, Gerber M et al (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603PubMedGoogle Scholar
  59. Shanechi MM, Hu RC, Williams ZM (2014) A cortical–spinal prosthesis for targeted limb movement in paralysed primate avatars. Nat Commun 5:3237PubMedCentralPubMedGoogle Scholar
  60. Sitaram R, Caria A, Birbaumer N (2009) Hemodynamic brain–computer interfaces for communication and rehabilitation. Neural Netw 22:1320–1328PubMedGoogle Scholar
  61. Song D, Chan RHM, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW (2007) Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. Biomed Eng IEEE Trans 54:1053–1066Google Scholar
  62. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci 100:7319PubMedCentralPubMedGoogle Scholar
  63. Tabot GA, Dammann JF, Berg JA, Tenore FV, Boback JL, Vogelstein RJ et al (2013) Restoring the sense of touch with a prosthetic hand through a brain interface. Proc Natl Acad Sci U S A 110:18279–18284PubMedCentralPubMedGoogle Scholar
  64. Theodore WH, Fisher R (2007) Brain stimulation for epilepsy. Acta Neurochir Suppl 97:261–272PubMedGoogle Scholar
  65. Thongpang S, Richner TJ, Brodnick SK, Schendel A, Kim J, Wilson JA et al (2011) A micro-electrocorticography platform and deployment strategies for chronic BCI applications. Clin EEG Neurosci 42:259–265PubMedCentralPubMedGoogle Scholar
  66. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791PubMedGoogle Scholar
  67. Yeckel MF, Berger TW (1990) Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc Natl Acad Sci U S A 87:5832–5836PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Electrical and Computer Engineering, Neuroscience and Cognitive ScienceMichigan State UniversityEast LansingUSA