Skip to main content

Vertebrate Pattern Generation: Overview

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Computational Neuroscience
  • 214 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdala AP, Rybak IA, Smith JC, Paton JF (2009) Abdominal expiratory activity in the rat brain stem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation. J Physiol 587:3539–3559

    PubMed Central  CAS  PubMed  Google Scholar 

  • Akay T, Acharya HJ, Fouad K, Pearson KG (2006) Behavioral and electromyographic characterization of mice lacking EphA4 receptors. J Neurophysiol 96:642–651

    CAS  PubMed  Google Scholar 

  • Amrollah E, Henaff P (2010) On the role of sensory feedbacks in Rowat–Selverston CPG to improve robot legged locomotion. Front Neurorobot 4:113

    PubMed Central  PubMed  Google Scholar 

  • Balis UJ, Morris KF, Koleski J, Lindsey BG (1994) Simulations of a ventrolateral medullary neural network for respiratory rhythmogenesis inferred from spike train cross-correlation. Biol Cybern 70:311–327

    CAS  PubMed  Google Scholar 

  • Bianchi AL, Denavitsaubie M, Champagnat J (1995) Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev 75:1–45

    CAS  PubMed  Google Scholar 

  • Botros SM, Bruce EN (1990) Neural network implementation of a three-phase model of respiratory rhythm generation. Biol Cybern 63:143–153

    CAS  PubMed  Google Scholar 

  • Brocard F, Shevtsova NA, Bouhadfane M, Tazerart S, Heinemann U, Rybak IA, Vinay L (2013) Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron 77:1047–1054

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999a) Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. J Neurophysiol 82:398–415

    PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999b) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382–397

    PubMed  Google Scholar 

  • Chen Y, Bauer C, Burmeister O, Rupp R, Mikut R (2007) First steps to future applications of spinal neural circuit models in neuroprostheses and humanoid robots. In: Proceedings of 17 workshop computational intelligence, Dortmund

    Google Scholar 

  • Cohen MI (1979) Neurogenesis of respiratory rhythm in the mammal. Physiol Rev 59:1105–1173

    CAS  PubMed  Google Scholar 

  • Crone SA, Quinlan KA, Zagoraiou L, Droho S, Restrepo CE, Lundfald L, Endo T, Setlak J, Jessell TM, Kiehn O, Sharma K (2008) Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60:70–83

    CAS  PubMed  Google Scholar 

  • Crone SA, Zhong G, Harris-Warrick R, Sharma K (2009) In mice lacking V2a interneurons, gait depends on speed of locomotion. J Neurosci 29:7098–7109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duffin J (1991) A model of respiratory rhythm generation. Neuroreport 2:623–626

    CAS  PubMed  Google Scholar 

  • Dunmyre JR, Del Negro CA, Rubin JE (2011) Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. J Comput Neurosci 31:305–328

    PubMed Central  PubMed  Google Scholar 

  • Feldman JL, Del Negro CA (2006) Looking for inspiration: new perspectives on respiratory rhythm. Nat Rev Neurosci 7:232–242

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gosgnach S (2011) The role of genetically-defined Interneurons in generating the mammalian locomotor rhythm. Integr Comp Biol 51:903–912

    PubMed  Google Scholar 

  • Goulding M (2009) Networks controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10:507–518

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham Brown T (1914) On the fundamental activity of the nervous centres: together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol 48:18–41

    PubMed Central  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system. Motor control, Sect 1, vol II. American Physiological Society, Bethesda, pp 1179–1236

    Google Scholar 

  • Grillner S, Kozlov A, Dario P, Stefanini C, Menciassi A, Lansner A, Hellgren KJ (2007) Modeling a vertebrate motor system: pattern generation, steering and control of body orientation. Prog Brain Res 165:221–234

    PubMed  Google Scholar 

  • Guertin PA (2009) The mammalian central pattern generator for locomotion. Brain Res Rev 62:45–56

    PubMed  Google Scholar 

  • Hao ZZ, Spardy LE, Nguyen EB, Rubin JE, Berkowitz A (2011) Strong interactions between spinal cord networks for locomotion and scratching. J Neurophysiol 106:1766–1781

    PubMed  Google Scholar 

  • Hill SA, Liu X-P, Borla MA, José JV, O’Malley DM (2005) Neurokinematic modeling of complex swimming patterns of the larval zebrafish. Neurocomputing 65–66:61–68

    Google Scholar 

  • Ijspeert AJ (2001) A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern 84:331–348

    CAS  PubMed  Google Scholar 

  • Janczewski WA, Feldman JL (2006) Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570:407–420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Janczewski WA, Onimaru H, Homma I, Feldman JL (2002) Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat. J Physiol 545:1017–1026

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967a) The effect of DOPA on the spinal cord: V. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol Scand 70:369–388

    CAS  PubMed  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1967b) The effect of DOPA on the spinal cord: VI. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70:389–402

    CAS  PubMed  Google Scholar 

  • Jasinski PE, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2013) Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the pre-Bötzinger complex: a computational modelling study. Eur J Neurosci 37:212–230

    PubMed Central  PubMed  Google Scholar 

  • Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21:100–109

    CAS  PubMed  Google Scholar 

  • Knudsen DP, Arsenault JT, Hill SA, O’Malley DM, José JV (2006) Locomotor network modeling based on identified zebrafish neurons. Neurocomputing 69:1169–1174

    Google Scholar 

  • Koizumi H, Smith JC (2008) Persistent Na+ and K+−dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro. J Neurosci 28:1773–1785

    CAS  PubMed  Google Scholar 

  • Kullander K, Butt SJ, Lebret JM, Lundfald L, Restrepo CE, Rydstrom A, Klein R, Kiehn O (2003) Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299:1889–1892

    CAS  PubMed  Google Scholar 

  • Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M (2004) Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42:375–386

    CAS  PubMed  Google Scholar 

  • Lindsey BG, Rybak IA, Smith JC (2012) Computational models and emergent properties of respiratory neural networks. Compr Physiol 2:1619–1670

    PubMed Central  PubMed  Google Scholar 

  • Lundfald L, Restrepo CE, Butt SJ, Peng CY, Droho S, Endo T, Zeilhofer HU, Sharma K, Kiehn O (2007) Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur J Neurosci 26:2989–3002

    PubMed  Google Scholar 

  • Maeda Y (2008) A hardware neuronal network model of two-level central pattern generator. Trans JPN Soc Med Biol Eng 46:496–504

    Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    CAS  PubMed  Google Scholar 

  • Markin SN, Klishko AN, Shevtsova NA, Lemay MA, Prilutsky BI, Rybak IA (2010) Afferent control of locomotor CPG: insights from a simple neuro-mechanical model. Ann NY Acad Sci 1198:21–34

    PubMed  Google Scholar 

  • McCrea DA, Rybak IA (2007) Modeling the mammalian locomotor CPG: insights from mistakes and perturbations. Prog Brain Res 165:235–253

    PubMed Central  PubMed  Google Scholar 

  • McCrea DA, Rybak IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146

    PubMed Central  PubMed  Google Scholar 

  • Molkov YI, Abdala AP, Bacak BJ, Smith JC, Paton JFR, Rybak IA (2010) Late-expiratory activity: emergence and interactions with the respiratory CPG. J Neurophysiol 104:2713–2729

    PubMed Central  PubMed  Google Scholar 

  • Ogilvie MD, Gottschalk A, Anders K, Richter DW, Pack AI (1992) A network model of respiratory rhythmogenesis. Am J Physiol Regul Integr Comp Physiol 263:R962–R975

    CAS  Google Scholar 

  • Onimaru H, Homma I (1987) Respiratory rhythm generator neurons in medulla of brain stem-spinal cord preparation from newborn rat. Brain Res 403:380–384

    CAS  PubMed  Google Scholar 

  • Onimaru H, Arata A, Homma I (1988) Primary respiratory rhythm generator in the medulla of brain stem-spinal cord preparation from newborn rat. Brain Res 445:314–324

    CAS  PubMed  Google Scholar 

  • Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23:1478–1486

    CAS  PubMed  Google Scholar 

  • Orlovsky GN, Deliagina T, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, New York

    Google Scholar 

  • Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol 582:113–125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paton JFR (1996) A working heart-brainstem preparation of the mouse. J Neurosci Methods 65:63–68

    CAS  PubMed  Google Scholar 

  • Rabe Bernhardt N, Memic F, Gezelius H, Thiebes AL, Vallstedt A, Kullander K (2012) DCC mediated axon guidance of spinal interneurons is essential for normal locomotor central pattern generator function. Dev Biol 366:279–289

    CAS  PubMed  Google Scholar 

  • Rabe N, Gezelius H, Vallstedt A, Memic F, Kullander K (2009) Netrin-1-dependent spinal interneuron subtypes are required for the formation of left-right alternating locomotor circuitry. J Neurosci 29:15642–15649

    CAS  PubMed  Google Scholar 

  • Restrepo CE, Margaryan G, Borgius L, Lundfald L, Sargsyan D, Kiehn O (2011) Change in the balance of excitatory and inhibitory midline fiber crossing as an explanation for the hopping phenotype in EphA4 knockout mice. Eur J Neurosci 34:1102–1112

    PubMed  Google Scholar 

  • Richter DW (1996) Neural regulation of respiration: rhythmogenesis and afferent control. In: Gregor R, Windhorst U (eds) Comprehensive human physiology, vol 2. Springer, Berlin, pp 2079–2095

    Google Scholar 

  • Rossignol S (1996) Neural control of stereotypic limb movements. In: Rowell LB, Shepherd J (eds) Handbook of physiology, Sect 12. American Physiological Society, Bethesda, pp 173–216

    Google Scholar 

  • Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA (2009a) Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc Natl Acad Sci USA 106:2939–2944

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rubin JE, Shevtsova NA, Ermentrout GB, Smith JC, Rybak IA (2009b) Multiple rhythmic states in a model of the respiratory CPG. J Neurophysiol 101:2146–2165

    PubMed Central  PubMed  Google Scholar 

  • Rubin JE, Bacak BJ, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2011) Interacting oscillations in neural control of breathing: modeling and qualitative analysis. J Comput Neurosci 30:607–6322

    PubMed Central  PubMed  Google Scholar 

  • Rybak IA, Paton JFR, Schwaber JS (1997) Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator. J Neurophysiol 77:2007–2026

    CAS  PubMed  Google Scholar 

  • Rybak IA, Paton JFR, Rogers RF, St. John WM (2002) Generation of the respiratory rhythm: state-dependency and switching. Neurocomputing 44–46:603–612

    Google Scholar 

  • Rybak IA, Shevtsova NA, Paton JFR, Dick TE, St. John WM, Morschel M, Dutschmann M (2004) Modeling the ponto-medullary respiratory network. Respir Physiol Neurobiol 143:307–319

    CAS  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006a) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577:617–639

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rybak IA, Stecina K, Shevtsova NA, McCrea DA (2006b) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol 577:641–658

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rybak IA, Abdala APL, Markin SN, Paton JFR, Smith JC (2007) Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Prog Brain Res 165:201–220

    PubMed Central  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Kiehn O (2013) Modelling genetic reorganizations in the mouse spinal cord affecting left-right coordination during locomotion. J Physiol 591:5491–5508

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sherwood WE, Harris-Warrick R, Guckenheimer J (2011) Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci 30:323–360

    PubMed  Google Scholar 

  • Skinner FK, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J Comput Neurosci 1:69–87

    CAS  PubMed  Google Scholar 

  • Smith JC, Feldman JL (1987) In vitro brainstem-spinal cord preparations for study of motor systems for mammalian respiration and locomotion. J Neurosci Methods 21:321–333

    CAS  PubMed  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brain stem region that may generate respiratory rhythm in mammals. Science 254:726–729

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JC, Butera RJ, Koshiya N, Del Negro C, Wilson CG, Johnson SM (2000) Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respir Physiol 122:131–147

    CAS  PubMed  Google Scholar 

  • Smith JC, Abdala AP, Koizumi H, Rybak IA, Paton JF (2007) Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. J Neurophysiol 98:3370–3387

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith JC, Abdala AP, Borgmann A, Rybak IA, Paton JF (2013) Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 36:152–162

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spardy LE, Markin SN, Shevtsova NA, Prilutsky BI, Rybak IA, Rubin JE (2011a) A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation. J Neural Eng 8:065003

    PubMed Central  PubMed  Google Scholar 

  • Spardy LE, Markin SN, Shevtsova NA, Prilutsky BI, Rybak IA, Rubin JE (2011b) A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: II. Phase asymmetry. J Neural Eng 8:065004

    PubMed Central  PubMed  Google Scholar 

  • Stuart DG, Hultborn H (2008) Thomas Graham Brown (1882–1965), Anders Lundberg (1920–), and the neural control of stepping. Brain Res Rev 59:74–95

    PubMed  Google Scholar 

  • Tabak J, Rinzel J, O’Donovan MJ (2001) The role of activity-dependent network depression in the expression and self-regulation of spontaneous activity in the developing spinal cord. J Neurosci 21:8966–8978

    CAS  PubMed  Google Scholar 

  • Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O (2013) Dual mode operation of neuronal networks involved in left-right alternation. Nature 500:85–88

    CAS  PubMed  Google Scholar 

  • Toporikova N, Butera RJ (2011) Two types of independent bursting mechanisms in inspiratory neurons: an integrative model. J Comput Neurosci 30:515–528

    PubMed Central  PubMed  Google Scholar 

  • Vallstedt A, Kullander K (2013) Dorsally derived spinal interneurons in locomotor circuits. Ann NY Acad Sci 1279:32–42

    CAS  PubMed  Google Scholar 

  • Wang X-J, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84–97

    Google Scholar 

  • Whelan PJ (2010) Shining light into the black box of spinal locomotor networks. Philos Trans R Soc Lond B Biol Sci 365:2383–2395

    PubMed Central  PubMed  Google Scholar 

  • Wolf E, Soffe S, Roberts A (2009) Longitudinal neuronal organization and coordination in a simple vertebrate: a continuous, semi-quantitative computer model of the central pattern generator for swimming in young frog tadpoles. J Comput Neurosci 27:291–308

    PubMed Central  PubMed  Google Scholar 

  • Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB (2009) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–662

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Narayan S, Geiman E, Lanuza GM, Velasquez T, Shanks B, Akay T, Dyck J, Pearson K, Gosgnach S, Fan CM, Goulding M (2008) V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60:84–96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong G, Shevtsova NA, Rybak IA, Harris-Warrick RM (2012) Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. J Physiol 590:4735–4759

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Rybak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Rybak, I. (2015). Vertebrate Pattern Generation: Overview. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_758

Download citation

Publish with us

Policies and ethics