Skip to main content

Perceptual-Motor Dissociation

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 61 Accesses

Definition

Perception

Intuitively, perception is the process of becoming aware of physical objects or phenomena through the senses. However, to define it as an observable phenomenon without resorting to a highly subjective concept such as awareness, one must include additional measurable criteria. A less involved and more up-to-date view is that perception is the mental function by means of which the physical world (including within body processes) is represented and the process by means of which this function interacts with the physical world, together with the consequence of this interaction. This definition dissolves from the start the perception-action dissociation dilemma: according to it, the two concepts are indissociable.

Motor Event

Any movement caused by the muscles.

Detailed Description

In some sense, the necessity of a tight perception-action coupling has been posited at least since Helmholtz (1867/1962). He proposed that the perceptual stability of our visual world in the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boring EG (1942) Sensation and perception in the history of experimental psychology. Appleton-Century, New York

    Google Scholar 

  • Cardoso-Leite P, Gorea A (2010) On the perceptual/motor dissociation: a review of concepts, theory, experimental paradigms and data interpretations. Seeing Perceiving 23:89–151

    PubMed  Google Scholar 

  • Franz VH (2001) Action does not resist visual illusions. Trends Cogn Sci 5:457–459

    PubMed  Google Scholar 

  • Franz VH, Gegenfurtner KR (2008) Grasping visual illusions: consistent data and no dissociation. Cogn Neuropsychol 25:920–950

    Google Scholar 

  • Gibbon J, Rutschmann R (1969) Temporal order judgment and reaction time. Science 165:413–415

    CAS  PubMed  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1979/1986) The ecological approach to visual perception. Erlbaum, Hillsdale

    Google Scholar 

  • Goodale MA (2011) Transforming vision into action. Vision Res 51(13):1567–1587

    PubMed  Google Scholar 

  • Goodale MA, Humphrey GK (1998) The objects of action and perception. Cognition 67:181–207

    CAS  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    CAS  PubMed  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Holender D, Duscherer K (2004) Unconscious perception: the need for a paradigm shift. Percept Psychophys 66:872–881

    PubMed  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24(5):849–878

    CAS  PubMed  Google Scholar 

  • Ingle DJ (1982) Organization of visuomotor behaviors in vertebrates. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Boston, pp 67–109

    Google Scholar 

  • Jeannerod M (1983) How do we direct our actions in space? In: Hein A, Jeannerod M (eds) Spatially oriented behavior. Springer, New York, pp 11–14

    Google Scholar 

  • Jeannerod M (1997) The cognitive neuroscience of action. Blackwell Science, Oxford

    Google Scholar 

  • Konen CS, Kastner S (2008) Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci 11:224–231

    CAS  PubMed  Google Scholar 

  • Maturana H, Varela F (1987) The tree of knowledge: the biological roots of human understanding. Shambhala, Boston

    Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46:774–785

    CAS  PubMed  Google Scholar 

  • O’Regan JK, Noë A (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Res 24:939–1011

    Google Scholar 

  • Paillard J (1960) The patterning of skilled movements. In: Field J, Magoun HW, Hall VE (eds) Handbook of physiology, neurophysiology, vol 3. American Physiological Society, Bethesda, pp 1679–1708

    Google Scholar 

  • Pisella L, Grea H, Tilikete C, Vighetto A, Desmurget M, Rode G, Boisson D, Rosetti Y (2000) An ‘automatic pilot’ for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat Neurosci 3:729–736

    CAS  PubMed  Google Scholar 

  • Pisella L, Binkofski F, Lasek K, Toni I, Rossetti Y (2006) No double dissociation between optic ataxia and visual agnosia: multiple sub-streams for multiple visuo-manual integrations. Neuropsychologia 44:2734–2748

    CAS  PubMed  Google Scholar 

  • Reingold EM, Merikle PM (1990) On the inter-relatedness of theory and measurement in the study of unconscious processes. Mind Lang 5:9–28

    Google Scholar 

  • Requin J, Riehle A, Seal J (1988) Neuronal activity and information processing in motor control: from stages to continuous flow. Biol Psychol 26:179–198

    CAS  PubMed  Google Scholar 

  • Rossetti Y, Pisella L, Vighetto A (2003) Optic ataxia revisited: visually guided action versus immediate visuomotor control. Exp Brain Res 153:171–179

    PubMed  Google Scholar 

  • Rossetti Y, Revol P, McIntosh R, Pisella L, Rode G, Danckert J, Tilikete C, Dijkerman HC, Boisson D, Vighetto A, Michel F, Milner AD (2005) Visually guided reaching: bilateral posterior parietal lesions cause a switch from fast visuomotor to slow cognitive control. Neuropsychologia 43:162–177

    CAS  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549–586

    Google Scholar 

  • von Helmholtz H (1867/1962) Treatise on physiological optics, vol 3. Dover, New York

    Google Scholar 

  • Warren WH (2006) The dynamics of perception and action. Psychol Rev 113(2):358–389

    PubMed  Google Scholar 

  • Wolpert DM (2007) Probabilistic models in human sensorimotor control. Hum Mov Sci 26(4):511–524

    PubMed Central  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269(5232):1880–1882

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Gorea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Gorea, A. (2015). Perceptual-Motor Dissociation. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_316

Download citation

Publish with us

Policies and ethics