Encyclopedia of Computational Neuroscience

2015 Edition
| Editors: Dieter Jaeger, Ranu Jung

Imaging, Specimen Preparation

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6675-8_283

Definition

Before specimens can be imaged for analysis using computational neuroanatomy techniques, they must be properly prepared. Computational neuroanatomy encompasses a wide range of analysis, and correspondingly, a wide range of specimens can be analyzed. This discussion will focus on the preparation of specimens for high-throughput 3D microscopy technologies that are being rapidly developed. Methodologies that emphasize 3D molecular and morphological imaging, including ultrahigh-resolution electron microscopy imaging, provide complementary perspectives that can be applied to computational neuroanatomy. Through such analyses, it is possible to carry out detailed descriptions of local circuits that will help further elucidate neuronal function. These microscopy technologies together with high-performance computing power that continue to be improved enable data-driven, multi-scale modeling and simulation of large-scale neuronal circuits (such as the complete connectome of the mouse...

This is a preview of subscription content, log in to check access

References

  1. Carson FL, Hladik C (2009) Histotechnology – a self-instructional text, 3rd edn. ASCP Press, Hong CongGoogle Scholar
  2. Choe Y, Mayerich D, Kwon J, Miller DE, Sung C, Chung JR et al (2011) Specimen preparation, imaging, and analysis protocols for knife-edge scanning microscopy. J Vis Exp 58:e3248. doi:10.3791/3248Google Scholar
  3. Gage GJ, Kipke DR, Shain W (2012) Whole animal perfusion fixation for rodents. J Vis Exp 65:e3564. doi:10.3791/3564Google Scholar
  4. Jaeger D (2001) Chapter 6. Accurate reconstruction of neuronal morphology. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 159–178Google Scholar
  5. Kleinfeld D, Bharioke A, Blinder P, Bock DD, Briggman KL, Chklovskii DB, Denk W, Helmstaedter M, Kaufhold JP, Lee WC, Meyer HS, Micheva KD, Oberlaender M, Prohaska S, Reid RC, Smith SJ, Takemura S, Tsai PS, Sakmann B (2011) Large-scale automated histology in the pursuit of connectomes. J Neurosci 31(45):16125–16138. doi:10.1523/JNEUROSCI.4077-11PubMedCentralPubMedGoogle Scholar
  6. Luby-Phelps K, Ning G, Fogerty J, Besharse JC (2003) Visualization of identified GFP-expressing cells by light and electron microscopy. J Histochem Cytochem 51(3):271–274PubMedGoogle Scholar
  7. Mayerich D, Abbott LC, McCormick B (2008a) Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain. J Microsc 231(1):134–143PubMedGoogle Scholar
  8. Mayerich D, Abbott LC, Keyser J (2008b) Visualization of cellular and microvascular relationships. IEEE Trans Vis Comput Graph 14(6):1611–1618, Art. No. 4658182PubMedGoogle Scholar
  9. Mikula S, Binding J, Denk W (2012) Staining and embedding the whole mouse brain for electron microscopy. Nat Methods 12:1198–1201. doi:10.1038/nmeth.2213 (Epub 21 Oct 2012)Google Scholar
  10. Senda T, Iizuka-Kogo A, Shimomura A (2005) Visualization of the nuclear lamina in mouse anterior pituitary cells and immunocytochemical detection of lamin A/C by quick-freeze freeze-substitution electron microscopy. J Histochem Cytochem 53(4):497–507PubMedGoogle Scholar
  11. Tapia JC, Kasthuri N, Hayworth KJ, Schalek R, Lichtman JW, Smith SJ, Buchanan J (2012) High-contrast en bloc staining of neuronal tissue for field emission scanning electron microscopy. Nat Protoc 7(2):193–206. doi:10.1038/nprot.2011.439PubMedCentralPubMedGoogle Scholar

Further Reading

  1. De Schutter E (ed) (2001) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca RatonGoogle Scholar
  2. Helmstaedter M, Briggman KL, Denk W (2011) High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat Neurosci 14(8):1081–1088. doi:10.1038/nn.2868PubMedGoogle Scholar
  3. Lichtman JW, Denk W (2011) The big and the small: challenges of imaging the brain’s circuits [Review]. Science 334(6056):618–623. doi:10.1126/science.1209168PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationUSA