Skip to main content

Neuromechanics of Joint Coordination

  • Reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 80 Accesses

Definition

“Neuromechanics of joint coordination in locomotion” addresses the control of synchronized dynamics across multiple limb segments during legged locomotion. It requires integrating perspectives, principles, and methods across the disciplines of neuroscience and biomechanics. The neurophysiological basis for locomotion is tuned to the intrinsic biomechanical constraints and conditions presented by both the organism’s biology and the implicit mechanical tasks required of legged locomotion. It is, therefore, necessary to study joint coordination within the context of identifiable performance goals, which are defined by the biomechanics of the task. Joint coordination can be then viewed as the changes that occur at one joint in response to deviations at another joint with the superseding goal to support a task-level locomotor performance goal.

Detailed Description

Redundancy Is Intrinsic to Legged Locomotion

Legged locomotion requires the coordinated output of numerous...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Auyang AG, Chang YH (2013) Effects of a foot placement constraint on use of motor equivalence during human hopping. PLoS One 8(7):e69429. doi:10.1371/journal.pone.0069429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Auyang AG, Yen JT, Chang YH (2009) Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping. Exp Brain Res 192(2):253–264. doi:10.1007/s00221-008-1582-7

    PubMed  Google Scholar 

  • Bauman JM, Chang YH (2013) Rules to limp by: joint compensation conserves limb function after peripheral nerve injury. Biol Lett 9(5):20130484. doi:10.1098/rsbl.2013.0484

    PubMed Central  PubMed  Google Scholar 

  • Beloozerova IN, Sirota MG (1993a) The role of the motor cortex in the control of accuracy of locomotor movements in the cat. J Physiol 461:1–25

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beloozerova IN, Sirota MG (1993b) The role of the motor cortex in the control of vigour of locomotor movements in the cat. J Physiol 461:27–46

    PubMed Central  CAS  PubMed  Google Scholar 

  • Beloozerova IN, Sirota MG (1998) Cortically controlled gait adjustments in the cat. Ann N Y Acad Sci 860:550–553

    CAS  PubMed  Google Scholar 

  • Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon, New York

    Google Scholar 

  • Bosco G, Poppele RE (2000) Reference frames for spinal proprioception: kinematics based or kinetics based? J Neurophysiol 83:2946–2955

    CAS  PubMed  Google Scholar 

  • Bosco G, Poppele RE (2003) Modulation of dorsal spinocerebellar responses to limb movement. II. Effect of sensory input. J Neurophysiol 90(5):3372–3383

    CAS  PubMed  Google Scholar 

  • Bosco G, Rankin A, Poppele R (1996) Representation of passive hindlimb postures in cat spinocerebellar activity. J Neurophysiol 76:715–726

    CAS  PubMed  Google Scholar 

  • Bosco G, Poppele RE, Eian J (2000) Reference frames for spinal proprioception: limb endpoint based or joint-level based? J Neurophysiol 83:2931–2945

    CAS  PubMed  Google Scholar 

  • Bosco G, Rankin A, Poppele RE (2003) Modulation of dorsal spinocerebellar responses to limb movement. I. Effect of serotonin. J Neurophysiol 90(5):3361–3371

    CAS  PubMed  Google Scholar 

  • Bosco G, Eian J, Poppele RE (2006) Phase-specific sensory representations in spinocerebellar activity during stepping: evidence for a hybrid kinematic/kinetic framework. Exp Brain Res 175(1):83–96. doi:10.1007/s00221-006-0530-7

    CAS  PubMed  Google Scholar 

  • Bunderson NE, Ting LH, Burkholder TJ (2007) Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems. J Neural Eng 4:234–245

    PubMed Central  PubMed  Google Scholar 

  • Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms in minimizing energy expenditure. Am J Physiol 233(5):R243–R261

    CAS  PubMed  Google Scholar 

  • Chang YH, Roiz RA, Auyang AG (2008) Intralimb compensation strategy depends on the nature of joint perturbation in human hopping. J Biomech 41(9):1832–1839. doi:10.1016/j.jbiomech.2008.04.006

    PubMed  Google Scholar 

  • Chang YH, Auyang AG, Scholz JP, Nichols TR (2009) Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury. J Exp Biol 212(Pt 21):3511–3521. doi:10.1242/jeb.033886

    PubMed Central  PubMed  Google Scholar 

  • Chvatal SA, Ting LH (2012) Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking. J Neurosci 32(35):12237–12250. doi:10.1523/JNEUROSCI.6344-11.2012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chvatal SA, Ting LH (2013) Common muscle synergies for balance and walking. Front Comput Neurosci 7:48. doi:10.3389/fncom.2013.00048

    PubMed Central  PubMed  Google Scholar 

  • Chvatal SA, Torres-Oviedo G, Safavynia SA, Ting LH (2011) Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors. J Neurophysiol 106(2):999–1015. doi:10.1152/jn.00549.2010

    PubMed Central  PubMed  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288(5463):100–106

    CAS  PubMed  Google Scholar 

  • Drew T, Kalaska J, Krouchev N (2008) Muscle synergies during locomotion in the cat: a model for motor cortex control. J Physiol 586(5):1239–1245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferris DP, Louie M, Farley CT (1998) Running in the real world: adjusting leg stiffness for different surfaces. Proc R Soc Lond Biol Sci 265(1400):989–994

    CAS  Google Scholar 

  • Ferris DP, Bohra ZA, Lukos JR, Kinnaird CR (2006) Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis. J Appl Physiol 100:163–170

    PubMed  Google Scholar 

  • Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202:3325–3332

    CAS  PubMed  Google Scholar 

  • Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556(Pt 1):267–282. doi:10.1113/jphysiol.2003.057174

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ivanenko YP, d’Avella A, Poppele RE, Lacquaniti F (2008) On the origin of planar covariation of elevation angles during human locomotion. J Neurophysiol 99(4):1890–1898. doi:10.1152/jn.01308.2007

    CAS  PubMed  Google Scholar 

  • Latash ML, Scholz JP, Schöner G (2002) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30(1):26–31

    PubMed  Google Scholar 

  • Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. Exp Brain Res 126(1):1–18

    CAS  PubMed  Google Scholar 

  • Moritz CT, Farley CT (2003) Human hopping on damped surfaces: strategies for adjusting leg mechanics. Proc R Soc Lond Ser B-Biol Sci 270(1525):1741–1746

    Google Scholar 

  • Poppele RE, Bosco G, Rankin AM (2002) Independent representations of limb axis length and orientation in spinocerebellar response components. J Neurophysiol 87:409–422

    CAS  PubMed  Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    CAS  PubMed  Google Scholar 

  • Schöner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    PubMed  Google Scholar 

  • Stahl VA, Nichols TR (2011) Short-term effects of muscular denervation and fasciotomy on global limb variables during locomotion in the decerebrate cat. Cells Tissues Organs 193(5):325–335. doi:10.1159/000323679

    PubMed Central  PubMed  Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235. doi:10.1038/nn963nn963

    CAS  PubMed  Google Scholar 

  • Toney ME, Chang YH (2013) Humans robustly adhere to dynamic walking principles by harnessing motor abundance to control forces. Exp Brain Res 231(4):433–443. doi:10.1007/s00221-013-3708-9

    PubMed  Google Scholar 

  • Wilmink RJ, Nichols TR (2003) Distribution of heterogenic reflexes among the quadriceps and triceps surae muscles of the cat hind limb. J Neurophysiol 90(4):2310–2324. doi:10.1152/jn.00833.2002

    PubMed  Google Scholar 

  • Yen JT, Chang YH (2010) Rate-dependent control strategies stabilize limb forces during human locomotion. J R Soc Interface 7(46):801–810. doi:10.1098/rsif.2009.0296

    PubMed Central  PubMed  Google Scholar 

  • Yen JT, Auyang AG, Chang YH (2009) Joint-level kinetic redundancy is exploited to control limb-level forces during human hopping. Exp Brain Res 196:439–451

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Hui Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Chang, YH. (2015). Neuromechanics of Joint Coordination. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6675-8_161

Download citation

Publish with us

Policies and ethics