Encyclopedia of Computational Neuroscience

2015 Edition
| Editors: Dieter Jaeger, Ranu Jung

Neuromorphic Sensors, Vision

  • Bernabe Linares-BarrancoEmail author
  • Teresa Serrano-Gotarredona
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6675-8_120


Neuromorphic sensors are artificial man-made sensors that try to imitate some of the working principles or structures of their biological counterparts. A neuromorphic vision sensor is, therefore, an artificial man-made vision sensor that mimics some of the working principles or structures found in living animals’ visual systems.

Detailed Description

Conventional video cameras are based capturing a sequence of still frames. Improving a camera means normally to increase the total number of pixels (resolution) and/or to increase the number of frames per second that can be captured, while reducing sensor area, power consumption, and possibly fabrication cost. These cameras just capture the light intensities of visual reality. If they are to be used in an artificial vision system (e.g., for robotics), then subsequent computing resources need to be allocated to analyze the sequence of captured frames and extract relevant information for decision making. The more resolution or the...

This is a preview of subscription content, log in to check access.


  1. Azadmehr M, Abrahamsen H, Hafliger P (2005) A foveated AER imager chip. Proc IEEE Int Symp Circ Syst (ISCAS) 3:2751–2754Google Scholar
  2. Boahen K, Andreou A (1992) A contrast-sensitive retina with reciprocal synapses. Adv Neural Inf Process Syst (NIPS) 4:764–772Google Scholar
  3. Chen S, Bermak A (2007) Arbitrated time-to-first spike CMOS image sensor with on-chip histogram equalization. IEEE Trans VLSI Syst 15(3):346–357Google Scholar
  4. Costas-Santos J, Serrano-Gotarredona T, Serrano-Gotarredona R, Linares-Barranc B (2007) A spatial contrast retina with on-chip calibration for neuromorphic spike-based AER vision systems. IEEE Trans Circuits Syst I 54(7):1444–1458Google Scholar
  5. Culurciello E, Etienne-Cummings R, Boahen KA (2003) A biomorphic digital image sensor. IEEE J Solid State Circ 38:281–294Google Scholar
  6. Leñero-Bardallo JA, Serrano-Gotarredona T, Linares-Barranco B (2010) A five-decade dynamic range ambient-light-independent calibrated signed-spatial-contrast AER retina with 0.1 ms latency and optional time-to-first-spike mode. IEEE Trans Circ Syst I 57(10):2632–2643Google Scholar
  7. Lichtsteiner P, Posch C, Delbruck T (2008) A 128 × 128 120 dB 15 ms latency asynchronous temporal contrast vision sensor. IEEE J Solid State Circ 43(2):566–576Google Scholar
  8. Liu SC, Kramer J, Indiveri G, Delbrück T, Douglas R (2002) Analog VLSI: circuits and principles. MIT Press, CambridgeGoogle Scholar
  9. Mead C (1989) Analog VLSI and neural systems. Addison-Wesley, ReadingGoogle Scholar
  10. Ozalevli E, Higgins CM (2005) Reconfigurable biologically inspired visual motion system using modular neuromorphic VLSI chips. IEEE Trans Circ Syst I 52(1):79–92Google Scholar
  11. Posch C, Matolin D, Wohlgenannt R (2011) A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE J Solid State Circ 46(1):259–275Google Scholar
  12. Ruedi PF et al (2003) A 128 × 128 pixel 120-dB dynamic-range vision sensor chip for image contrast and orientation extraction. IEEE J Solid State Circ 38:2325–2333Google Scholar
  13. Serrano-Gotarredona T, Linares-Barranco B (2013) A 128 × 128 1.5% contrast sensitivity 0.9% FPN 3 us latency 4 mW asynchronous frame-free dynamic vision sensor using transimpedance amplifiers. IEEE J Solid State Circ 48(3):827–838Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bernabe Linares-Barranco
    • 1
    Email author
  • Teresa Serrano-Gotarredona
    • 1
  1. 1.Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and University of SevillaSevillaSpain