CD8 T Cells

  • David Kotlyar
Living reference work entry


The harnessing and purification of CD8+ T cells as a novel therapy for neoplastic diseases is a recent innovation. With improvements in the understanding of T cell biology, the identification of specific subsets of CD8+ T cells has been shown to be superior at suppressing tumor activity both in vitro and in vivo. Recent clinical trials using both purified tumor infiltrating lymphocytes (TILs) as well as the novel chimeric antigen receptor T cells (CAR T cells) have shown great promise in the treatment of a variety of neoplasias including melanoma, and leukemias. Many clinical trials are now ongoing to elucidate the potential of these new therapies.


Adoptive cell therapy CD8+ T cells Chimeric antigen T-cell receptor (CAR) T cells Cytoreductive therapy Effector T cells Naïve T cells Programmed-death receptor ligand-1 (PDL-1) 


  1. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 7th ed. Philadelphia: Elsevier/Saunders; 2012.Google Scholar
  2. Araki K, Youngblood B, Ahmed R. The role of mTOR in memory CD8 T-cell differentiation. Immunol Rev. 2010;235(1):234–43.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Besser MJ, Shapira-Frommer R, Itzhaki O, et al. Adoptive transfer of tumor infiltrating lymphocytes in metastatic melanoma patients: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res. 2013;19:4792–800.CrossRefPubMedGoogle Scholar
  4. Brentjens RJ, Curran KJ. Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen. Hematol/Educ Prog Am Soc Hematol Am Soc Hematol. 2012;2012:143–51.Google Scholar
  5. Cheadle EJ, Hawkins RE, Batha H, O’Neill AL, Dovedi SJ, Gilham DE. Natural expression of the CD19 antigen impacts the long-term engraftment but not antitumor activity of CD19-specific engineered T cells. J Immunol. 2010;184(4):1885–96.CrossRefPubMedGoogle Scholar
  6. Chi H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol. 2012;12(5):325–38.PubMedPubMedCentralGoogle Scholar
  7. Chinnasamy D, Tran E, Yu Z, Morgan RA, Restifo NP, Rosenberg SA. Simultaneous targeting of tumor antigens and the tumor vasculature using T lymphocyte transfer synergize to induce regression of established tumors in mice. Cancer Res. 2013;73(11):3371–80.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dudley ME, Wunderlich JR, Yang JC, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol. 2005;23(10):2346–57.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dudley ME, Gross CA, Somerville RP, et al. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol. 2013;31(17):2152–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266–76.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gajewski TF. Cancer immunotherapy. Mol Oncol. 2012;6(2):242–50.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gajewski TF, Meng Y, Blank C, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 2006;213:131–45.CrossRefPubMedGoogle Scholar
  13. Gattinoni L, Klebanoff CA, Palmer DC, et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest. 2005;115(6):1616–26.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell. Nat Rev Cancer. 2012;12(10):671–84.CrossRefPubMedGoogle Scholar
  15. Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Harlin H, Kuna TV, Peterson AC, Meng Y, Gajewski TF. Tumor progression despite massive influx of activated CD8(+) T cells in a patient with malignant melanoma ascites. Cancer Immunol Immunother. 2006;55(10):1185–97.CrossRefPubMedGoogle Scholar
  18. Hinrichs CS, Spolski R, Paulos CM, et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood. 2008;111(11):5326–33.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  20. June C, Rosenberg SA, Sadelain M, Weber JS. T-cell therapy at the threshold. Nat Biotechnol. 2012;30(7):611–4.CrossRefPubMedGoogle Scholar
  21. Klebanoff CA, Gattinoni L, Torabi-Parizi P, et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci U S A. 2005;102(27):9571–6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kochenderfer JN, Rosenberg SA. Treating B cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev. 2013;10(5):267–76.Google Scholar
  23. Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood. 2010a;116(19):3875–86.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010b;116(20):4099–102.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kochenderfer JN, Dudley ME, Feldman SA, et al. B cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Murphy K, Travers P, Walport M, Janeway C. Janeway’s immunobiology. 8th ed. New York: Garland Science; 2012.Google Scholar
  27. Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460(7251):103–7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Restifo NP, Robbins PF, Rosenberg SA. Tumor immunology. In: Paul WE, editor. Fundamental immunology. 6th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008. p. 1489–522.Google Scholar
  30. Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer – what clinicians need to know. Nature Reviews. 2011;8(10):577–85.PubMedGoogle Scholar
  31. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17(13):4550–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schwartzentruber DJ, Hom SS, Dadmarz R, et al. In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J Clin Oncol. 1994;12(7):1475–83.PubMedGoogle Scholar
  33. Vacchelli E, Eggermont A, Fridman WH, et al. Trial watch: adoptive cell transfer for anticancer immunotherapy. Oncoimmunology. 2013;2(5):e24238.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wallner S, Gruber T, Baier G, Wolf D. Releasing the brake: targeting Cbl-b to enhance lymphocyte effector functions. Clin Dev Immunol. 2012;2012:692639.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, New York (outside the USA) 2016

Authors and Affiliations

  1. 1.Medical Oncology ServiceNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations