Skip to main content

ARAP3

  • Living reference work entry
  • First Online:
  • 86 Accesses

Synonyms

ARF-GAP, RHO-GAP, ankyrin repeat, and pleckstrin homology domains containing protein 3; Centaurin delta 3; Centd3; Drag1; Expressed sequence AI851258

Historical Background

Small GTPases of the Ras superfamily are binary switches that, by cycling between active GTP-bound and inactive GDP-bound conformations, regulate a wide variety of cellular and developmental events. They are grouped based on the sequence homology and cellular functions into five families: Ras, Rho, Ran, Rab, and ARF. The Rho and ARF family small GTPases are well established as regulators of cellular actin rearrangements and vesicular trafficking (Bos et al. 2007). Small GTPases are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of small GTPase-bound GDP to GTP, whereas GTPase-activating proteins (GAPs) inactivate small GTPases by stimulating hydrolysis of the small GTPase-bound GTP to GDP (Bos et al. 2007). In general, each small GTPase family has its specific GEFs and...

This is a preview of subscription content, log in via an institution.

References

  • Bao H, Li F, Wang C, Wang N, Jiang Y, Tang Y, et al. Structural basis for the specific recognition of RhoA by the dual GTPase-activating protein ARAP3. J Biol Chem. 2016;291:16709–19. doi:10.1074/jbc.M116.736140.

    Article  CAS  PubMed  Google Scholar 

  • Boato F, Hendrix S, Huelsenbeck SC, Hofmann F, Grosse G, Djalali S, et al. C3 peptide enhances recovery from spinal cord injury by improved regenerative growth of descending fiber tracts. J Cell Sci. 2010;123:1652–62. doi:10.1242/jcs.066050.

    Article  PubMed  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129:865–77. doi:10.1016/j.cell.2007.05.018.

    Article  CAS  PubMed  Google Scholar 

  • Craig HE, Coadwell J, Guillou H, Vermeren S. ARAP3 binding to phosphatidylinositol-(3,4,5)-trisphosphate depends on N-terminal tandem PH domains and adjacent sequences. Cell Signal. 2010;22:257–64. doi:10.1016/j.cellsig.2009.09.025.

    Article  CAS  PubMed  Google Scholar 

  • Gambardella L, Anderson KE, Jakus Z, Kovács M, Voigt S, Hawkins PT, et al. Phosphoinositide 3-OH kinase regulates integrin-dependent processes in neutrophils by signaling through its effector ARAP3. J Immunol. 2013;190:381–91. doi:10.4049/jimmunol.1201330. (Baltimore, Md : 1950)

    Article  CAS  PubMed  Google Scholar 

  • Gambardella L, Anderson KE, Nussbaum C, Segonds-Pichon A, Margarido T, Norton L, et al. The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood. 2011;118:1087–98. doi:10.1182/blood-2010-10-312959.

    Article  CAS  PubMed  Google Scholar 

  • Gambardella L, Hemberger M, Hughes B, Zudaire E, Andrews S, Vermeren S. PI3K signaling through the dual GTPase-activating protein ARAP3 is essential for developmental angiogenesis. Sci Signal. 2010;3:ra76. doi:10.1126/scisignal.2001026.

    Article  PubMed  Google Scholar 

  • I ST, Nie Z, Stewart A, Najdovska M, NE H, H H, et al. ARAP3 is transiently tyrosine phosphorylated in cells attaching to fibronectin and inhibits cell spreading in a RhoGAP-dependent manner. J Cell Sci. 2004;117:6071–84. doi:10.1242/jcs.01526.

    Article  PubMed  Google Scholar 

  • Jeon CY, Kim HJ, Lee JY, Kim JB, Kim SC, Park JB. p190RhoGAP and Rap-dependent RhoGAP (ARAP3) inactivate RhoA in response to nerve growth factor leading to neurite outgrowth from PC12 cells. Exp Mol Med. 2010a;42:335–44. doi:10.3858/emm.2010.42.5.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon CY, Kim HJ, Morii H, Mori N, Settleman J, Lee JY, et al. Neurite outgrowth from PC12 cells by basic fibroblast growth factor (bFGF) is mediated by RhoA inactivation through p190RhoGAP and ARAP3. J Cell Physiol. 2010b;224:786–94. doi:10.1002/jcp.22184.

    Article  CAS  PubMed  Google Scholar 

  • Jeon CY, Moon MY, Kim JH, Kim HJ, Kim JG, Li Y, et al. Control of neurite outgrowth by RhoA inactivation. J Neurochem. 2012;120:684–98. doi:10.1111/j.1471-4159.2011.07564.x.

    Article  CAS  PubMed  Google Scholar 

  • Kahn RA, Bruford E, Inoue H, Logsdon Jr JM, Nie Z, Premont RT, et al. Consensus nomenclature for the human ArfGAP domain-containing proteins. J Cell Biol. 2008;182:1039–44. doi:10.1083/jcb.200806041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kartopawiro J, Bower NI, Karnezis T, Kazenwadel J, Betterman KL, Lesieur E, et al. Arap3 is dysregulated in a mouse model of hypotrichosis-lymphedema-telangiectasia and regulates lymphatic vascular development. Hum Mol Genet. 2014;23:1286–97. doi:10.1093/hmg/ddt518.

    Article  CAS  PubMed  Google Scholar 

  • Kirsch KH, Georgescu MM, Ishimaru S, Hanafusa H. CMS: an adapter molecule involved in cytoskeletal rearrangements. Proc Natl Acad Sci USA. 1999;96:6211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowanetz K, Husnjak K, Holler D, Kowanetz M, Soubeyran P, Hirsch D, et al. CIN85 associates with multiple effectors controlling intracellular trafficking of epidermal growth factor receptors. Mol Biol Cell. 2004;15:3155–66. doi:10.1091/mbc.E03.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krugmann S. ARAP3 is a PI3K- and Rap-regulated GAP for RhoA. Curr Biol. 2004;14:1380–4. doi:10.1016/j.

    Article  CAS  PubMed  Google Scholar 

  • Krugmann S, Anderson KE, Ridley SH, Risso N, McGregor A, Coadwell J, et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol Cell. 2002;9:95–108. doi:10.1016/S1097-2765(02)00434-3.

    Article  CAS  PubMed  Google Scholar 

  • Krugmann S, Andrews S, Stephens L, Hawkins PT. ARAP3 is essential for formation of lamellipodia after growth factor stimulation. J Cell Sci. 2006;119:425–32. doi:10.1242/jcs.02755.

    Article  CAS  PubMed  Google Scholar 

  • Leone M, Cellitti J, Pellecchia M. The Sam domain of the lipid phosphatase Ship2 adopts a common model to interact with Arap3-Sam and EphA2-Sam. BMC Struct Biol. 2009;9:59. doi:10.1186/1472-6807-9-59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Wei W, Kowalski PE, Chang ACY, Cohen SN. EST-based genome-wide gene inactivation identifies ARAP3 as a host protein affecting cellular susceptibility to anthrax toxin. Proc Natl Acad Sci USA. 2004;101:17246–51. doi:10.1073/pnas.0407794101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercurio FA, Marasco D, Pirone L, Scognamiglio PL, Pedone EM, Pellecchia M, et al. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights. Chembiochem. 2013;14:100–6. doi:10.1002/cbic.201200592.

    Article  CAS  PubMed  Google Scholar 

  • Moon MY, Kim HJ, Kim JG, Lee JY, Kim J, Kim SC, et al. Small GTPase Rap1 regulates cell migration through regulation of small GTPase RhoA activity in response to transforming growth factor-??1. J Cell Physiol. 2013;228:2119–26. doi:10.1002/jcp.24383.

    Article  CAS  PubMed  Google Scholar 

  • Nandy D, Asmann YW, Mukhopadhyay D, Basu A. Role of AKT-glycogen synthase kinase axis in monocyte activation in human beings with and without type 2 diabetes. J Cell Mol Med. 2010;14:1396–407. doi:10.1111/j.1582-4934.2009.00900.x.

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JH, Deneubourg L, Rehmann H, de Koning J, Zhang Z, Krugmann S, et al. The PI3K effector Arap3 interacts with the PI(3,4,5)P3 phosphatase SHIP2 in a SAM domain-dependent manner. Cell Signal. 2007;19:1249–57. doi:10.1016/j.cellsig.2006.12.015.

    Article  CAS  PubMed  Google Scholar 

  • Santy LC, Casanova JE. GTPase signaling: bridging the GAP between ARF and Rho. Curr Biol. 2002;12:R360–2.

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Jiang J, Vermeren S, Tong W. ARAP3 functions in hematopoietic stem cells. PLoS One. 2014;9:1–21. doi:10.1371/journal.pone.0116107.

    Google Scholar 

  • Stacey TTI, Nie Z, Stewart A, Najdovska M, Hall NE, He H, et al. ARAP3 is transiently tyrosine phosphorylated in cells attaching to fibronectin and inhibits cell spreading in a RhoGAP-dependent manner. J Cell Sci. 2004;117:6071–84. doi:10.1242/jcs.01526.

    Article  CAS  Google Scholar 

  • Wu B, Wang F, Zhang J, Zhang Z, Qin L, Peng J, et al. Identification and structural basis for a novel interaction between Vav2 and Arap3. J Struct Biol. 2012;180:84–95. doi:10.1016/j.jsb.2012.06.011.

    Article  CAS  PubMed  Google Scholar 

  • Yagi R, Tanaka M, Sasaki K, Kamata R, Nakanishi Y, Kanai Y, et al. ARAP3 inhibits peritoneal dissemination of scirrhous gastric carcinoma cells by regulating cell adhesion and invasion. Oncogene. 2011;30:1413–21. doi:10.1038/onc.2010.522.

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Rafiq NBM, Krishnasamy A, Hartman KL, Jones GE, Bershadsky AD, et al. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep. 2013;5:1456–68. doi:10.1016/j.celrep.2013.10.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateswarlu Kanamarlapudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Owens, SE., Tamaddon-Jahromi, S., Kanamarlapudi, V. (2016). ARAP3. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_611-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_611-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics