Skip to main content

p53

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 111 Accesses

Synonyms

FLJ92943; LFS1; TP53; TRP53

Historical Background

As the major tumor suppressor in multicellular organisms, p53 is one of the most intensively studied human proteins (over 80,000 publications including nearly 10,000 reviews) because it is critical for maintaining genomic stability, cellular homeostatic processes in response to multiple stresses, and suppressing cancers. The p53 protein is a tetrameric, sequence-specific, DNA-binding transcription factor, stabilized and activated in response to genotoxic and non-genotoxic stresses; estimates are that activation of p53 directly or indirectly induces or represses the expression of about 3,000 genes (about 10% of human genes). These genes coordinate the cellular response to protect cells and/or the organism from damage (Riley et al. 2008). When possible they promote a return to homeostasis by arresting the cell cycle and inducing repair; by altering cellular metabolism; by initiating apoptosis, a program of cell death; or by...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aubrey BJ, Strasser A, Kelly GL. Tumor-suppressor functions of the TP53 pathway. Cold Spring Harbor Perspect Med. 2016;6.

    Google Scholar 

  • Bieging K, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14:359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candi E, Agostini M, Melino G, Bernassola F. How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat. 2014;35:702–14.

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Lozano G. 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer. 2009;9:831–41.

    Article  CAS  PubMed  Google Scholar 

  • Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24:2899–908.

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 2016;85:375–404.

    Article  CAS  PubMed  Google Scholar 

  • Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358:15–6.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ. The common mechanisms of transformation by the small DNA tumor viruses: the inactivation of tumor suppressor gene products: p53. Virology. 2009;384:285–93.

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu WJ, Amatruda JF, Abrams JM. p53 ancestry: gazing through an evolutionary lens. Nat Rev Cancer. 2009;9:758–62.

    Article  CAS  PubMed  Google Scholar 

  • Meek DW, Anderson CW. Posttranslational modification of p53: cooperative integrators of function. In: Levine AJ, Lane D, editors. Cold spring harbor perspectives in biology, volume on the p53 family. New York: Cold Spring Harbor Laboratory Press; 2010. p. 81–96.

    Google Scholar 

  • Meek DW, Hupp TR. The regulation of MDM2 by multisite phosphorylation – opportunities for molecular-based intervention to target tumors? Semin Cancer Biol. 2010;20:19–28.

    Article  CAS  PubMed  Google Scholar 

  • Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer. 2009;9:724–37.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TA, Menendez D, Resnick MA, Anderson CW. Mutant TP53 posttranslational modifications: challenges and opportunities. Hum Mutat. 2014;35:738–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. In: Levine AJ, Lane D, editors. Cold spring harbor perspectives in biology, volume on the p53 family. New York: Cold Spring Harbor Laboratory Press; 2010. p. 123–40.

    Google Scholar 

  • Perry ME. The regulation of the p53-mediated stress response by MDM2 and MDM4. In: Levine AJ, Lane D, editors. Cold spring harbor perspectives in biology, volume on the p53 family. New York: Cold Spring Harbor Laboratory Press; 2010. p. 97–108.

    Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 2008;9:402–12.

    Article  CAS  PubMed  Google Scholar 

  • Shetzer Y, Molchadsky, A, Rotter V. Oncogenic mutant p53 gain of function nourishes the vicious cycle of tumor development and cancer stem-cell function. Cold Spring Harb Perspect Med 2016 doi:10.1101/cshperspect.a026203.

    Google Scholar 

  • Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta. 2009;1787:414–20.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137:413–31.

    Article  CAS  PubMed  Google Scholar 

  • Whibley C, Pharoah D, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009;9:95–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl W. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC (outside the USA)

About this entry

Cite this entry

Menendez, D., Nguyen, TA., Resnick, M.A., Anderson, C.W. (2016). p53. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics