Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

RasGrf1 and RasGrf2

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_138-1


Historical Background

The Ras guanine nucleotide releasing factors (RasGrfs) were initially identified as a result of a search for mammalian homolog(s) of the yeast CDC25 Ras activator protein. Whereas other mammalian RasGEFs identified (belonging to the SOS and GRP families) are more widely expressed, the RasGrf1 and RasGrf2 members of the RasGRF family are preferentially, but not exclusively, expressed in the central nervous system. RasGrf1 and RasGrf2 are large proteins composed by multiple modular domains accounting for protein-protein or protein-lipid interactions which are responsible for functional coupling to upstream and downstream signaling and for fine regulation of their intrinsic exchange activity.

Initial studies showed that both RasGrf1 and RasGrf2 are able to activate canonical Ras proteins (H-Ras, N-Ras, or K-Ras) and Rac1, but only RasGrf1 is able to activate members of the R-Ras subfamily (R-Ras, TC21, M-Ras). Furthermore,...


Beta Cell Proliferation Multiple Functional Domain CDC25 Domain RasGrf1 Expression Pancreatic Beta Cell Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Baschieri F, Confalonieri S, Bertalot G, Di Fiore PP, Dietmaier W, Leist M, et al. Spatial control of Cdc42 signalling by a GM130-RasGRF complex regulates polarity and tumorigenesis. Nat Commun. 2014;5:4839.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Borras C, Monleon D, Lopez-Grueso R, Gambini J, Orlando L, Pallardo FV, et al. RasGrf1 deficiency delays aging in mice. Aging. 2011;3(3):262–76.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Calvo F, Sanz-Moreno V, Agudo-Ibanez L, Wallberg F, Sahai E, Marshall CJ, et al. RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nat Cell Biol. 2011;13(7):819–26.CrossRefPubMedGoogle Scholar
  4. Darcy MJ, Trouche S, Jin SX, Feig LA. Age-dependent role for Ras-GRF1 in the late stages of adult neurogenesis in the dentate gyrus. Hippocampus. 2014a;24(3):315–25.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Darcy MJ, Trouche S, Jin SX, Feig LA. Ras-GRF2 mediates long-term potentiation, survival, and response to an enriched environment of newborn neurons in the hippocampus. Hippocampus. 2014b;24(11):1317–29.CrossRefPubMedPubMedCentralGoogle Scholar
  6. DiBattista AM, Dumanis SB, Song JM, Bu G, Weeber E, Rebeck GW, et al. Very low density lipoprotein receptor regulates dendritic spine formation in a RasGRF1/CaMKII dependent manner. Biochimica et biophysica acta. 2015;1853(5):904–17.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Drake NM, DeVito LM, Cleland TA, Soloway PD. Imprinted Rasgrf1 expression in neonatal mice affects olfactory learning and memory. Genes Brain Behav. 2011;10(4):392–403.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Feig LA. Regulation of neuronal function by Ras-GRF exchange factors. Genes Cancer. 2011;2(3):306–19.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fernandez-Medarde A, Santos E. The RasGrf family of mammalian guanine nucleotide exchange factors. Biochimica et biophysica acta. 2011;1815(2):170–88.PubMedGoogle Scholar
  10. Gavino C, Hamel N, Zeng JB, Legault C, Guiot MC, Chankowsky J, et al. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol. 2015;137(4):1178–88. e7CrossRefPubMedGoogle Scholar
  11. Hysi PG, Young TL, Mackey DA, Andrew T, Fernández-Medarde A, Solouki AM, et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nature Genet. 2010;42(10):902–5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jimeno D, Gomez C, Calzada N, de la Villa P, Lillo C, Santos E. RASGRF2 controls nuclear migration in postnatal retinal cone photoreceptors. J Cell Sci. 2016;129(4):729–42.CrossRefPubMedGoogle Scholar
  13. Jin SX, Bartolome C, Arai JA, Hoffman L, Uzturk BG, Kumar-Singh R, et al. Domain contributions to signaling specificity differences between Ras-guanine nucleotide releasing factor (Ras-GRF) 1 and Ras-GRF2. J Biol Chem. 2014;289(23):16551–64.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Stacey D, Bilbao A, Maroteaux M, Jia T, Easton AC, Longueville S, et al. RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release. Proc Natl Acad Sci USA. 2012;109(51):21128–33.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Talebian A, Robinson-Brookes K, MacDonald JI, Meakin SO. Ras guanine nucleotide releasing factor 1 (RasGrf1) enhancement of Trk receptor-mediated neurite outgrowth requires activation of both H-Ras and Rac. J Mol Neurosci. 2012;49(1):38–51.CrossRefPubMedGoogle Scholar
  16. Tarnowski M, Schneider G, Amann G, Clark G, Houghton P, Barr FG, et al. RasGRF1 regulates proliferation and metastatic behavior of human alveolar rhabdomyosarcomas. Int J Oncol. 2012;41(3):995–1004.PubMedPubMedCentralGoogle Scholar
  17. Wang Q, Siminovitch KA, Downey GP, McCulloch CA. Ras-guanine-nucleotide-releasing factors 1 and 2 interact with PLCgamma at focal adhesions to enable IL-1-induced Ca(2+) signalling, ERK activation and MMP-3 expression. Biochem J. 2013;449(3):771–82.CrossRefPubMedGoogle Scholar
  18. Zhu Q, Wang L, Xiao Z, Xiao F, Luo J, Zhang X, et al. Decreased expression of Ras-GRF1 in the brain tissue of the intractable epilepsy patients and experimental rats. Brain Res. 2012;1493:99–109.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  1. 1.Centro de Investigación del Cáncer, IBMCC (CSIC/USAL)University of SalamancaSalamancaSpain