Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

Natriuretic Peptide Receptor Type C (NPRC)

  • Nicolás M. Kouyoumdzian
  • Natalia L. Rukavina Mikusic
  • Hyun J. Lee
  • Belisario E. Fernández
  • Marcelo R. Choi
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101995-1

Synonyms

Historical Background

The natriuretic system constitutes a family of cardiac- and vascular-derived hormones named Atrial Natriuretic Peptide (ANP), Brain Natriuretic Peptide (BNP), C-type Natriuretic Peptide (CNP), and Urodilatin (URO), which play an essential role on the regulation of blood pressure, intravascular volume, and electrolyte homeostasis in all mammals. Binding of natriuretic peptides (NPs) to either Natriuretic Peptide Receptor Type A (NPRA) or type B (NPRB) leads to activation of the particulate guanylate cyclase (pGC) catalytic domain which generates cGMP-dependent second messenger signaling cascade, mediating most of the biological actions of these peptides (Anand-Srivastava and Trachte 1993). NPs bind also to NPRC, which is considered a clearance receptor responsible for receptor-mediated degradation of these peptides. In addition, recent studies have revealed multiple...

Keywords

Permeability Obesity Hydrolysis Attenuation Tyrosine 
This is a preview of subscription content, log in to check access

References

  1. Anand-Srivastava MB. Natriuretic peptide receptor-C signaling and regulation. Peptides. 2005;26(6):1044–59.CrossRefPubMedGoogle Scholar
  2. Anand-Srivastava MB, Trachte GJ. Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev. 1993;45(4):455–97.PubMedGoogle Scholar
  3. Bianciotti LG, Vatta MS, Elverdin JC, di Carlo MB, Negri G, Fernandez BE. Atrial natriuretic factor-induced amylase output in the rat parotid gland appears to be mediated by the inositol phosphate pathway. Biochem Biophys Res Commun. 1998;247(1):123–8.CrossRefPubMedGoogle Scholar
  4. Cantú SM, Donoso AS, Kouyoumdzian NM, Rukavina Mikusic NL, Puyó AM, et al. Clinical aspects of C-type natriuretic peptide on the cardiovascular system. Int J Clin Endocrinol Metab. 2015;1(2):031–6.Google Scholar
  5. Cohen D, Cohen D, Koh GY, Nikonova LN, Porter JG, Maack T. Molecular determinants of the clearance function of type C receptors of natriuretic peptides. J Biol Chem. 1996;271(16):9863–9.CrossRefPubMedGoogle Scholar
  6. Collins S. A heart-adipose tissue connection in the regulation of energy metabolism. Nat Rev Endocrinol. 2014;10(3):157–63.CrossRefPubMedGoogle Scholar
  7. Fox AA, Collard CD, Shernan SK, Seidman CE, Seidman JG, Liu KY, et al. Natriuretic peptide system gene variants are associated with ventricular dysfunction after coronary artery bypass grafting. Anesthesiology. 2009;110(4):738–47.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hirata M, Chang CH, Murad F. Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells. Biochim Biophys Acta. 1989;1010:346–51.CrossRefPubMedGoogle Scholar
  9. Hu Q, Liu Q, Wang S, Zhen X, Zhang Z, Lv R, et al. NPR-C gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: a multicenter study. Oncotarget. 2016;7(23):33662–74.PubMedPubMedCentralGoogle Scholar
  10. Jaubert F, Martin N, Washburn LL, Lee BK, Eicher EM, Guénet JL. Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3). Proc Natl Acad Sci U S A. 1999;96(18):10278–83.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Li Y, Hashim S, Anand-Srivastava MB. Intracellular peptides of natriuretic peptide receptor-C inhibit vascular hypertrophy via Gqα/MAP kinase signaling pathways. Cardiovasc Res. 2006;72:464–72.CrossRefPubMedGoogle Scholar
  12. Mouawad R, Li Y, Anand-Srivastava MB. Atrial natriuretic peptide-C receptor-induced attenuation of adenylyl cyclase signaling activates phosphatidylinositol turnover in A10 vascular smooth muscle cells. Mol Pharmacol. 2004;65(4):917–24.CrossRefPubMedGoogle Scholar
  13. Murthy KS, Teng B, Jin J, Makhlouf GM. G protein-dependent activation of smooth muscle eNOS via natriuretic peptide clearance receptor. Am J Phys. 1998;275(6 Pt 1):pC1409–16.Google Scholar
  14. Nagase M, Ando K, Katafuchi T, Kato A, Hirose S, Fujita T. Role of natriuretic peptide receptor type C in Dahl saltsensitive hypertensive rats. Hypertension. 1997;30(2 Pt 1):177–83.CrossRefPubMedGoogle Scholar
  15. Naruko T, Itoh A, Haze K, Ehara S, Fukushima H, Sugama Y, et al. C-type natriuretic peptide and natriuretic peptide receptors are expressed by smooth muscle cells in the neointima after percutaneous coronary intervention. Atherosclerosis. 2005;181:241–50.CrossRefPubMedGoogle Scholar
  16. Nussenzveig DR, Lewicki JA, Maack T. Cellular mechanisms of the clearance function of type C receptors of atrial natriuretic factor. J Biol Chem. 1990;265(34):20952–8.PubMedGoogle Scholar
  17. Prins BA, Weber MJ, Hu RM, Pedram A, Daniels M, Levin ER. Atrial natriuretic peptide inhibits mitogen-activated protein kinase through the clearance receptor. Potential role in the inhibition of astrocyte proliferation. J Biol Chem. 1996;271(24):14156–62.CrossRefPubMedGoogle Scholar
  18. Rahmutula D, Nakayama T, Soma M, Kosuge K, Aoi N, Izumi Y, et al. Structure and polymorphisms of the human natriuretic peptide receptor C gene. Endocrine. 2002;17(2):85–90.CrossRefPubMedGoogle Scholar
  19. Rose RA, Giles WR. Natriuretic peptide C receptor signalling in the heart and vasculature. J Physiol. 2008;586(2):353–66.CrossRefPubMedGoogle Scholar
  20. Rubattu S, Sciarretta S, Morriello A, Calvieri C, Battistoni A, Volpe M. NPR-C: a component of the natriuretic peptide family with implications in human diseases. J Mol Med. 2010;88(9):889–97.CrossRefPubMedGoogle Scholar
  21. Rukavina Mikusic NL, Kravetz MC, Kouyoumdzian NM, Della Penna SL, Rosón MI, Fernández BE, et al. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. J Signal Transduct. 2014;2014:731350.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sabbatini ME, Rodríguez M, di Carlo MB, Davio CA, Vatta MS, Bianciotti LG. C-type natriuretic peptide enhances amylase release through NPR-C receptors in the exocrine pancreas. Am J Physiol Gastrointest Liver Physiol. 2007;293(5):G987–94.CrossRefPubMedGoogle Scholar
  23. Saulnier PJ, Roussel R, Halimi JM, Lebrec J, Dardari D, Maimaitiming S, et al. Impact of natriuretic peptide clearance receptor (NPR3) gene variants on blood pressure in type 2 diabetes. Diabetes Care. 2011;34(5):1199–204.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sun JZ, Oparil S, Lucchesi P, Thompson JA, Chen YF. Tyrosine kinase receptor activation inhibits NPR-C in lung arterial smooth muscle cells. Am J Phys Lung Cell Mol Phys. 2001;281(1):L155–63.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2016

Authors and Affiliations

  • Nicolás M. Kouyoumdzian
    • 1
  • Natalia L. Rukavina Mikusic
    • 1
  • Hyun J. Lee
    • 2
  • Belisario E. Fernández
    • 1
  • Marcelo R. Choi
    • 1
    • 2
  1. 1.Instituto de Investigaciones Cardiológicas “Prof. Dr. Alberto C. Taquini”, ININCA, UBA-CONICETBuenos AiresArgentina
  2. 2.Cátedra de Anatomía e Histología, Departamento de Ciencias Biológicas, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina