Encyclopedia of Signaling Molecules

Living Edition
| Editors: Sangdun Choi

eIF3

  • Avik Choudhuri
  • Anirban Ray
  • Arunima Biswas
  • Umadas Maitra
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6438-9_101984-1

Synonyms

Historical Background

The Process of Translation Initiation

Translation initiation in eukaryotic cells is defined as the process by which a 40S ribosomal subunit containing bound initiator Met-tRNAi (methionine is the first N-terminal amino acid of all synthesized protein chains) interacts with an mRNA and selects the start AUG codon to set the reading frame of protein synthesis. The process involves the formation of multiple noncovalent intermediate biochemical complexes in a series of distinct partial steps and requires the essential participation of a dozen protein factors, collectively called the eukaryotic translation Initiation Factors (eIFs). A schematic representation of the canonical pathway of translation initiation from a translationally competent eukaryotic capped-mRNA is depicted in Fig. 1.
This is a preview of subscription content, log in to check access.

References

  1. Bandyopadhyay A, Matsumoto T, Maitra U. Fission yeast Int6 is not essential for global translation initiation, but deletion of int6+ causes hypersensitivity to caffeine and affects spore formation. Mol Biol Cell. 2000;11:4005–18.CrossRefGoogle Scholar
  2. Bandyopadhyay A, Lakshmanan V, Matsumoto T, Chang EC, Maitra U. Moe1 and spInt6, the fission yeast homologs of mammalian translation initiation factor 3 subunits p66 (eIF3d) and p48 (eIF3e), respectively are required for stable association of eIF3 subunits. J Biol Chem. 2002;277:2360–7.CrossRefGoogle Scholar
  3. Beznoskova P, Cuchalova L, Wagner S, Shoemaker CJ, Gunisova S, von der Haar T, et al. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet. 2013;9(11):e1003962.CrossRefGoogle Scholar
  4. Choudhuri A, Evans T, Maitra U. An approach to reveal novel translational regulatory mechanisms in vertebrates: probing the function of eIF3 non-core subunits. In: 9th International Zebrafish Meeting on Development and Genetics, Madison. 2010.Google Scholar
  5. Choudhuri A, Maitra U, Evans T. Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis. Proc Natl Acad Sci U S A. 2013;110(24):9818–23.CrossRefGoogle Scholar
  6. Crane R, Craig R, Murray R, Dunand-Sauthier I, Humphrey T, Norbury C. A fission yeast homolog of Int6, the mammalian oncoprotein and eIF3 subunit, induces drug resistance when overexpressed. Mol Biol Cell. 2000;11:3993–4003.CrossRefGoogle Scholar
  7. Csibi A, Cornille K, Leibovitch MP, Poupon A, Tintignac LA, Sanchez AMJ, Leibovitch SA. The translation regulatory subunit eIF3f controls the kinase-dependent mTOR signaling required for muscle differentiation and hypertrophy in mouse. PLoS One. 2010;5:e8994.CrossRefGoogle Scholar
  8. Damoc E, Fraser CS, Zhou M, Videler H, Mayeur GL, Hershey JW, et al. Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol Cell Proteomics. 2007;6(7):1135–46.CrossRefGoogle Scholar
  9. Grzmil M, Rzymski T, Milani M, Harris AL, Capper RG, Saunders NJ, Salhan A, Ragoussis J, Norbury CJ. An oncogenic role of eIF3e/INT6 in human breast cancer. Oncogene. 2010;29:4080–9.CrossRefGoogle Scholar
  10. Hershey JW. The role of eIF3 and its individual subunits in cancer. Biochim Biophys Acta. 2015;1849(7):792–800.CrossRefGoogle Scholar
  11. Hinnebusch AG. eIF3: a versatile scaffold for translation initiation complexes. Trends Biochem Sci. 2006;31:553–62.CrossRefGoogle Scholar
  12. Hinnebusch AG. Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev. 2011;75:434–67.CrossRefGoogle Scholar
  13. Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol. 2012;4(10).  https://doi.org/10.1101/cshperspect.a011544.CrossRefGoogle Scholar
  14. Jackson RJ, Helen CUT, Pestova TV. The mechanism of eukaryotic translation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27.CrossRefGoogle Scholar
  15. Kim BH, Cai X, Vaughn JN, von Arnim AG. On the functions of the h subunit of eukaryotic initiation factor 3 in late stages of translation. Genome Biol. 2007;8:R60.CrossRefGoogle Scholar
  16. Majumdar R, Maitra U. Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation. EMBO J. 2005;24:3737–46.CrossRefGoogle Scholar
  17. Majumdar R, Bandopadhyay A, Maitra U. Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40 S preinitiation complex. J Biol Chem. 2002;278:6580–7.CrossRefGoogle Scholar
  18. Pisarev AV, Hellen CU, Pestova TV. Recycling of eukaryotic posttermination ribosomal complexes. Cell. 2007;131(2):286–99.CrossRefGoogle Scholar
  19. Ray A, Bandopadhyay A, Matsumoto T, Deng H, Maitra U. Fission yeast translation initiation factor 3 subunit eIF3h is not essential for global translation initiation, but deletion of eif3h+ affects spore formation. Yeast. 2008;25:809–25.CrossRefGoogle Scholar
  20. Shi J, Kahle A, Hershey JW, Honchak BM, Warnecke JA, Leong SP, Nelson MA. Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptpsis in tumor cells. Oncogene. 2006;25:4923–36.CrossRefGoogle Scholar
  21. Sonenberg N, Hinnebusch AG. New modes of translational control in development, behaiour and disease. Mol Cell. 2007;28(5):721–9.CrossRefGoogle Scholar
  22. Sun C, Todorovic A, Querol-Audi J, Bai Y, Villa N, Snyder M, et al. Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3). Proc Natl Acad Sci U S A. 2011;108(51):20473–8.CrossRefGoogle Scholar
  23. Valášek L, Nielsen KH, Zhang F, Fekete CA, Hinnebusch AG. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol Cell Biol. 2004;24:9437–55.CrossRefGoogle Scholar
  24. Yen H-CS, Gordon C, Chang EC. Schizosaccharomyces pombe Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteosome. Cell. 2003;112:207–17.CrossRefGoogle Scholar
  25. Zhou C, Arslan F, Wee S, Krishnan S, Ivanov AR, Oliva A, Leatherwood J, Wolf DA. PCI proteins eIF3e and eIF3m define distinct translation initiation factor 3 complexes. BMC Biol. 2005;3:14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Avik Choudhuri
    • 1
  • Anirban Ray
    • 2
  • Arunima Biswas
    • 3
  • Umadas Maitra
    • 4
  1. 1.Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeUSA
  2. 2.Amity Institute of BiotechnologyAmity UniversityKolkataIndia
  3. 3.Department of MicrobiologyRaidighi CollegeRaidighi, South 24 ParganasIndia
  4. 4.Department of Developmental & Molecular BiologyAlbert Einstein College of MedicineBronx, New YorkUSA