Skip to main content

Tyrosine-Protein Phosphatase Non-receptor Type 11 (PTPN11)

  • Living reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 59 Accesses

Synonyms

BPTP3; CFC; NS1; Protein tyrosine phosphatase, non-receptor type 11; Protein tyrosine phosphatase-2; Protein tyrosine phosphatase 1D; Protein tyrosine phosphatase 2C; PTP-1D; PTP-2C; PTP2C; PTPN11; SH-PTP2; SH-PTP3; SHP-2; SHP2; Shp2; SHPTP2; Tyrosine-protein phosphatase non-receptor type 11

Historical Background

Src homology 2-containing protein tyrosine phosphatase (SHP2, also known as PTPN11) is a member of the non-receptor-type protein tyrosine phosphatase (PTP) family and is encoded by PTPN11gene. In the early 1990s, this PTP was identified on the basis of its sequence similarity to the catalytic domain of known PTPs. PTPs dephosphorylate tyrosine-phosphorylated proteins, which generally promote cellular events such as cell growth, differentiation, migration, adhesion, and apoptosis. Therefore, PTPs are considered to be negative regulators in intracellular signal transductions. However, biochemical and genetic analyses in 1990s showed that SHP2 promotes the activation...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allard JD, Chang HC, Herbst R, McNeill H, Simon MA. The SH2-containing tyrosine phosphatase corkscrew is required during signaling by sevenless, Ras1 and Raf. Development. 1996;122:1137–46.

    CAS  PubMed  Google Scholar 

  • Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL, et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med. 2004;10:849–57. doi:10.1038/nm1084.

    Article  CAS  PubMed  Google Scholar 

  • Bentires-Alj M, Gil SG, Chan R, Wang ZC, Wang Y, Imanaka N, et al. A role for the scaffolding adapter GAB2 in breast cancer. Nat Med. 2006;12:114–21. doi:10.1038/nm1341.

    Article  CAS  PubMed  Google Scholar 

  • Chan RJ, Leedy MB, Munugalavadla V, Voorhorst CS, Li Y, Yu M, et al. Human somatic PTPN11 mutations induce hematopoietic-cell hypersensitivity to granulocyte-macrophage colony-stimulating factor. Blood. 2005;105:3737–42. doi:10.1182/blood-2004-10-4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YN, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148–52. doi:10.1038/nature18621.

    Article  CAS  PubMed  Google Scholar 

  • Gauthier AS, Furstoss O, Araki T, Chan R, Neel BG, Kaplan DR, et al. Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron. 2007;54:245–62. doi:10.1016/j.neuron.2007.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutch MJ, Flint AJ, Keller J, Tonks NK, Hengartner MO. The Caenorhabditis elegans SH2 domain-containing protein tyrosine phosphatase PTP-2 participates in signal transduction during oogenesis and vulval development. Genes Dev. 1998;12:571–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama M, Higashi H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 2005;96:835–43. doi:10.1111/j.1349-7006.2005.00130.x.

    Article  CAS  PubMed  Google Scholar 

  • Heuberger J, Kosel F, Qi J, Grossmann KS, Rajewsky K, Birchmeier W. Shp2/MAPK signaling controls goblet/Paneth cell fate decisions in the intestine. Proc Natl Acad Sci U S A. 2014;111:3472–7. doi:10.1073/pnas.1309342111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 1998;92:441–50.

    Article  CAS  PubMed  Google Scholar 

  • Ke Y, Zhang EE, Hagihara K, Wu D, Pang Y, Klein R, et al. Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol. 2007;27:6706–17. doi:10.1128/MCB.01225-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kontaridis MI, Yang W, Bence KK, Cullen D, Wang B, Bodyak N, et al. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation. 2008;117:1423–35. doi:10.1161/CIRCULATIONAHA.107.728865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusakari S, Saitow F, Ago Y, Shibasaki K, Sato-Hashimoto M, Matsuzaki Y, et al. Shp2 in forebrain neurons regulates synaptic plasticity, locomotion, and memory formation in mice. Mol Cell Biol. 2015;35:1557–72. doi:10.1128/MCB.01339-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, Shoelson SE, et al. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor. J Biol Chem. 1993;268:21478–81.

    CAS  PubMed  Google Scholar 

  • Milarski KL, Saltiel AR. Expression of catalytically inactive Syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J Biol Chem. 1994;269:21239–43.

    CAS  PubMed  Google Scholar 

  • Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S, et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer cell. 2005;7:179–91. doi:10.1016/j.ccr.2005.01.010.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi T, Matozaki T, Horita K, Fujioka Y, Kasuga M. Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol Cell Biol. 1994;14:6674–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluskey S, Wandless TJ, Walsh CT, Shoelson SE. Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains. J Biol Chem. 1995;270:2897–900.

    Article  PubMed  Google Scholar 

  • Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, Shalaby F, et al. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J. 1997;16:2352–64. doi:10.1093/emboj/16.9.2352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto S, Wandless TJ, Shoelson SE, Neel BG, Walsh CT. Activation of the SH2-containing protein tyrosine phosphatase, SH-PTP2, by phosphotyrosine-containing peptides derived from insulin receptor substrate-1. J Biol Chem. 1994;269:13614–22.

    CAS  PubMed  Google Scholar 

  • Tang TL, Freeman Jr RM, O’Reilly AM, Neel BG, Sokol SY. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell. 1995;80:473–83.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Gelb BD. Noonan syndrome and related disorders: genetics and pathogenesis. Annu Rev Genomics Hum Genet. 2005;6:45–68. doi:10.1146/annurev.genom.6.080604.162305.

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29:465–8. doi:10.1038/ng772.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi R, Masoudi M, Takahashi A, Fujii Y, Hayashi T, Kikuchi I, et al. YAP and TAZ, Hippo signaling targets, act as a rheostat for nuclear SHP2 function. Dev Cell. 2013;26:658–65. doi:10.1016/j.devcel.2013.08.013.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita H, Kotani T, Park JH, Murata Y, Okazawa H, Ohnishi H, et al. Role of the protein tyrosine phosphatase Shp2 in homeostasis of the intestinal epithelium. PloS One. 2014;9:e92904. doi:10.1371/journal.pone.0092904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamauchi K, Milarski KL, Saltiel AR, Pessin JE. Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling. Proc Natl Acad Sci U S A. 1995;92:664–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Klaman LD, Chen B, Araki T, Harada H, Thomas SM, et al. An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell. 2006;10:317–27. doi:10.1016/j.devcel.2006.01.002.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takenori Kotani or Takashi Matozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Kotani, T., Murata, Y., Saito, Y., Matozaki, T. (2017). Tyrosine-Protein Phosphatase Non-receptor Type 11 (PTPN11). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101832-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101832-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics