Skip to main content

ULK1

  • Living reference work entry
  • First Online:

Synonyms

ATG1; Unc-51 like autophagy activating kinase 1

Historical Background

ULK1 is a Ser/Thr protein kinase and centrally involved in autophagy. Autophagy is an intracellular degradation process which contributes to the elimination of damaged or long-lived proteins and/or organelles. Autophagy occurs at basal levels in most cell types and ensures cellular homeostasis. However, autophagy can also be actively induced upon stress, including the withdrawal of nutrients or growth factors, treatment with chemotherapeutics, or intracellular infections.

In 1993, Tsukada and Ohsumi reported the isolation and characterization of 15 yeast mutants defective in the accumulation of autophagic bodies in the vacuoles. In a mutant termed apg1 (autophagy), nitrogen starvation did not induce protein degradation, and the apg1 mutant lost viability faster than wild-type cells during nitrogen starvation (Tsukada and Ohsumi 1993). In 1997, Matsuura et al. reported that the APG1gene encodes a protein...

This is a preview of subscription content, log in via an institution.

References

  • Alers S, Löffler AS, Paasch F, Dieterle AM, Keppeler H, Lauber K, et al. Atg13 and FIP200 act independently of Ulk1 and Ulk2 in autophagy induction. Autophagy. 2011;7:1423–33. [pii] 18027.

    Google Scholar 

  • Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32:2–11. doi:10.1128/MCB.06159-11. [pii] MCB.06159-11.

    Google Scholar 

  • Bach M, Larance M, James DE, Ramm G. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events. Biochem J. 2011;440:283–91. doi:10.1042/BJ20101894. [pii] BJ20101894.

    Google Scholar 

  • Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao QH, Liu F, Yang ZL, Fu XH, Yang ZH, Liu Q, et al. Prognostic value of autophagy related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1 in gastric cancer. Am J Transl Res. 2016;8:3831–47.

    PubMed  PubMed Central  Google Scholar 

  • Chan EY, Kir S, Tooze SA. siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy. J Biol Chem. 2007;282:25464–74. doi:10.1074/jbc.M703663200. [pii] M703663200.

    Google Scholar 

  • Chan EY, Longatti A, McKnight NC, Tooze SA. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol. 2009;29:157–71. doi:10.1128/MCB.01082-08. [pii] MCB.01082-08.

    Google Scholar 

  • Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci U S A. 2011;108:11121–6. doi:10.1073/pnas.1107969108. [pii] 1107969108.

    Google Scholar 

  • Cheong H, Wu J, Gonzales LK, Guttentag SH, Thompson CB, Lindsten T. Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy. 2014;10:45–56. doi:10.4161/auto.26505. [pii] 26505.

    Google Scholar 

  • Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol. 2010;191:155–68. doi:10.1083/jcb.201002100. [pii] jcb.201002100.

    Google Scholar 

  • Dorsey FC, Rose KL, Coenen S, Prater SM, Cavett V, Cleveland JL, et al. Mapping the phosphorylation sites of Ulk1. J Proteome Res. 2009;8:5253–63. doi:10.1021/pr900583m.

    Article  CAS  PubMed  Google Scholar 

  • Driessen S, Berleth N, Friesen O, Löffler AS, Böhler P, Hieke N, et al. Deubiquitinase inhibition by WP1130 leads to ULK1 aggregation and blockade of autophagy. Autophagy. 2015;11:1458–70. doi:10.1080/15548627.2015.1067359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC, Tee AR. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy. 2011;7:737–47. [pii] 15491.

    Google Scholar 

  • Dunlop EA, Seifan S, Claessens T, Behrends C, Kamps MA, Rozycka E, et al. FLCN, a novel autophagy component, interacts with GABARAP and is regulated by ULK1 phosphorylation. Autophagy. 2014;10:1749–60. doi:10.4161/auto.29640. [pii] 29640.

    Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61. doi:10.1126/science.1196371. [pii] science.1196371.

    Google Scholar 

  • Egan DF, Chun MG, Vamos M, Zou H, Rong J, Miller CJ, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell. 2015;59:285–97. doi:10.1016/j.molcel.2015.05.031. [pii] S1097-2765(15)00398-6.

    Google Scholar 

  • Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284:12297–305. doi:10.1074/jbc.M900573200. [pii] M900573200.

    Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–9. doi:10.1038/nature04724. [pii] nature04724.

    Google Scholar 

  • Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan JL, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol 2008;181:497–510. doi:10.1083/jcb.200712064. [pii] jcb.200712064.

    Google Scholar 

  • Harding TM, Hefner-Gravink A, Thumm M, Klionsky DJ. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J Biol Chem. 1996;271:17621–4.

    Article  CAS  PubMed  Google Scholar 

  • Hieke N, Löffler AS, Kaizuka T, Berleth N, Böhler P, Driessen S, et al. Expression of a ULK1/2 binding-deficient ATG13 variant can partially restore autophagic activity in ATG13-deficient cells. Autophagy. 2015;11:1471–83. doi:10.1080/15548627.2015.1068488.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009a;20:1981–91. doi:10.1091/mbc.E08-12-1248. [pii] E08-12-1248.

    Google Scholar 

  • Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 2009b;5:973–9. [pii] 9296.

    Google Scholar 

  • Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy. 2010;6:764–76. [pii] 12709.

    Google Scholar 

  • Jiang L, Duan BS, Huang JX, Jiao X, Zhu XW, Sheng HH, et al. Association of the expression of unc-51-Like kinase 1 with lymph node metastasis and survival in patients with esophageal squamous cell carcinoma. Int J Clin Exp Med. 2014;7:1349–54.

    PubMed  PubMed Central  Google Scholar 

  • Jiao H, Su GQ, Dong W, Zhang L, Xie W, Yao LM, et al. Chaperone-like protein p32 regulates ULK1 stability and autophagy. Cell Death Differ. 2015. doi:10.1038/xyza.2015.34. [pii] xyza201534.

    Google Scholar 

  • Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, et al. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell. 2011;43:572–85. doi:10.1016/j.molcel.2011.06.018. [pii] S1097-2765(11)00464-3.

    Google Scholar 

  • Joo JH, Wang B, Frankel E, Ge L, Xu L, Iyengar R, et al. The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis. Mol Cell. 2016;62:491–506. doi:10.1016/j.molcel.2016.04.020. [pii] S1097-2765(16)30096-X.

    Google Scholar 

  • Joshi A, Iyengar R, Joo JH, Li-Harms XJ, Wright C, Marino R, et al. Nuclear ULK1 promotes cell death in response to oxidative stress through PARP1. Cell Death Differ. 2015. doi:10.1038/cdd.2015.88. [pii] cdd201588.

    Google Scholar 

  • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20:1992–2003. doi:10.1091/mbc.E08-12-1249. [pii] E08-12-1249.

    Google Scholar 

  • Karanasios E, Walker SA, Okkenhaug H, Manifava M, Hummel E, Zimmermann H, et al. Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun. 2016;7:12420. doi:10.1038/ncomms12420. [pii] ncomms12420.

    Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41. doi:10.1038/ncb2152. [pii] ncb2152.

    Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA, Jr., Emr SD, Sakai Y, Sandoval IV, et al. A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003;5:539–45. [pii] S153458070300296X.

    Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4. doi:10.1038/nature04723. [pii] nature04723.

    Google Scholar 

  • Komduur JA, Veenhuis M, Kiel JA. The Hansenula polymorpha PDD7 gene is essential for macropexophagy and microautophagy. FEMS Yeast Res. 2003;3:27–34. [pii] S1567135602001356.

    Google Scholar 

  • Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell. 2013;155:688–98. doi:10.1016/j.cell.2013.09.049.

    Article  CAS  PubMed  Google Scholar 

  • Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood. 2008;112:1493–502. doi:10.1182/blood-2008-02-137398. [pii] blood-2008-02-137398.

    Google Scholar 

  • Kuroyanagi H, Yan J, Seki N, Yamanouchi Y, Suzuki Y, Takano T, et al. Human ULK1, a novel serine/threonine kinase related to UNC-51 kinase of Caenorhabditis elegans: cDNA cloning, expression, and chromosomal assignment. Genomics. 1998;51:76–85. [pii] S088875439895340X.

    Google Scholar 

  • Lai T, Garriga G. The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to regulate axon outgrowth in C. elegans. Development. 2004;131:5991–6000. doi:10.1242/dev.01457. [pii] 131/23/5991.

    Google Scholar 

  • Lazarus MB, Shokat KM. Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1. Bioorg Med Chem. 2015;23:5483–8. doi:10.1016/j.bmc.2015.07.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazarus MB, Novotny CJ, Shokat KM. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem Biol. 2015;10:257–61. doi:10.1021/cb500835z.

    Article  CAS  PubMed  Google Scholar 

  • Lee EJ, Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy. 2011;7:689–95. [pii] 15450.

    Google Scholar 

  • Li J, Qi W, Chen G, Feng D, Liu J, Ma B, et al. Mitochondrial outer-membrane E3 ligase MUL1 ubiquitinates ULK1 and regulates selenite-induced mitophagy. Autophagy. 2015. doi:10.1080/15548627.2015.1017180.

    Google Scholar 

  • Li M, Lindblad JL, Perez E, Bergmann A, Fan Y. Autophagy-independent function of Atg1 for apoptosis-induced compensatory proliferation. BMC Biol. 2016a;14:70. doi:10.1186/s12915–016-0293-y.

    Google Scholar 

  • Li TY, Sun Y, Liang Y, Liu Q, Shi Y, Zhang CS, et al. ULK1/2 constitute a bifurcate node controlling glucose metabolic fluxes in addition to autophagy. Mol Cell. 2016b;62:359–70. doi:10.1016/j.molcel.2016.04.009. [pii] S1097-2765(16)30059-4.

    Google Scholar 

  • Liang CC, Wang C, Peng X, Gan B, Guan JL. Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J Biol Chem. 2010;285:3499–509. doi:10.1074/jbc.M109.072389. [pii] M109.072389.

    Google Scholar 

  • Liang Q, Yang P, Tian E, Han J, Zhang H. The C. elegans ATG101 homolog EPG-9 directly interacts with EPG-1/Atg13 and is essential for autophagy. Autophagy. 2012;8:1426–33. doi:10.4161/auto.21163. [pii] 21163.

    Google Scholar 

  • Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, et al. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet. 2015;11:e1004987. doi:10.1371/journal.pgen.1004987.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, et al. GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science. 2012;336:477–81. doi:10.1126/science.1217032. [pii] 336/6080/477.

    Google Scholar 

  • Liu CC, Lin YC, Chen YH, Chen CM, Pang LY, Chen HA, et al. Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol Cell. 2016;61:84–97. doi:10.1016/j.molcel.2015.11.001. [pii] S1097-2765(15)00861-8.

    Google Scholar 

  • Löffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M, Kundu M, et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy. 2011;7:696–706. [pii] 15451.

    Google Scholar 

  • Mack HI, Zheng B, Asara JM, Thomas SM. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy. 2012;8:1197–214. doi:10.4161/auto.20586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene. 1997;192:245–50. [pii] S0378-1119(97)00084-X.

    Google Scholar 

  • McAlpine F, Williamson LE, Tooze SA, Chan EY. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2. Autophagy. 2013;9:361–73. doi:10.4161/auto.23066. [pii] 23066.

    Google Scholar 

  • McIntire SL, Garriga G, White J, Jacobson D, Horvitz HR. Genes necessary for directed axonal elongation or fasciculation in C. elegans. Neuron. 1992;8:307–22. [pii] 0896-6273(92)90297-Q.

    Google Scholar 

  • Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA. ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy. 2007;3:106–16. [pii] 3595.

    Google Scholar 

  • Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy. 2009;5:649–62. [pii] 8249.

    Google Scholar 

  • Mochizuki H, Toda H, Ando M, Kurusu M, Tomoda T, Furukubo-Tokunaga K. Unc-51/ATG1 controls axonal and dendritic development via kinesin-mediated vesicle transport in the Drosophila brain. PLoS One. 2011;6:e19632. doi:10.1371/journal.pone.0019632. [pii] PONE-D-10-05532.

    Google Scholar 

  • Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, et al. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells. 2002;7:75–90. [pii] 499.

    Google Scholar 

  • Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013;15:406–16. doi:10.1038/ncb2708. [pii] ncb2708.

    Google Scholar 

  • Ogura K, Goshima Y. The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the netrin receptor UNC-5 in Caenorhabditis elegans. Development. 2006;133:3441–50. doi:10.1242/dev.02503. [pii] dev.02503.

    Google Scholar 

  • Ogura K, Wicky C, Magnenat L, Tobler H, Mori I, Muller F, et al. Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase. Genes Dev. 1994;8:2389–400.

    Article  CAS  PubMed  Google Scholar 

  • Ogura K, Shirakawa M, Barnes TM, Hekimi S, Ohshima Y. The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC-51. Genes Dev. 1997;11:1801–11.

    Article  CAS  PubMed  Google Scholar 

  • Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, et al. Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res. 2000;85:1–12. [pii] S0169328X00002187.

    Google Scholar 

  • Papinski D, Schuschnig M, Reiter W, Wilhelm L, Barnes CA, Maiolica A, et al. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol Cell. 2014;53:471–83. doi:10.1016/j.molcel.2013.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JM, Jung CH, Seo M, Otto NM, Grunwald D, Kim KH, et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy. 2016;12:547–64. doi:10.1080/15548627.2016.1140293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A, Saxty B, et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem. 2015;290:11376–83. doi:10.1074/jbc.C114.627778. [pii] C114.627778.

    Google Scholar 

  • Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, et al. Global analysis of protein phosphorylation in yeast. Nature. 2005;438:679–84. doi:10.1038/nature04187. [pii] nature04187.

    Google Scholar 

  • Rajesh S, Bago R, Odintsova E, Muratov G, Baldwin G, Sridhar P, et al. Binding to syntenin-1 protein defines a new mode of ubiquitin-based interactions regulated by phosphorylation. J Biol Chem. 2011;286:39606–14. doi:10.1074/jbc.M111.262402. [pii] M111.262402.

    Google Scholar 

  • Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15:741–50. doi:10.1038/ncb2757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto R, Byrd DT, Brown HM, Hisamoto N, Matsumoto K, Jin Y. The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization. Mol Biol Cell. 2005;16:483–96. doi:10.1091/mbc.E04-07-0553. [pii] E04-07-0553.

    Google Scholar 

  • Saleiro D, Mehrotra S, Kroczynska B, Beauchamp EM, Lisowski P, Majchrzak-Kita B, et al. Central role of ULK1 in type I interferon signaling. Cell Rep. 2015;11:605–17. doi:10.1016/j.celrep.2015.03.056. [pii] S2211-1247(15)00347-2.

    Google Scholar 

  • Scott RC, Juhasz G, Neufeld TP. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol. 2007;17:1–11. doi:10.1016/j.cub.2006.10.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A. 2011;108:4788–93. doi:10.1073/pnas.1100844108. [pii] 1100844108.

    Google Scholar 

  • Straub M, Bredschneider M, Thumm M. AUT3, a serine/threonine kinase gene, is essential for autophagocytosis in Saccharomyces cerevisiae. J Bacteriol. 1997;179:3875–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stromhaug PE, Bevan A, Dunn WA, Jr. GSA11 encodes a unique 208-kDa protein required for pexophagy and autophagy in Pichia pastoris. J Biol Chem. 2001;276:42422–35. doi:10.1074/jbc.M104087200. [pii] M104087200.

    Google Scholar 

  • Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC. Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J. 2011;30:636–51. doi:10.1038/emboj.2010.338. [pii] emboj2010338.

    Google Scholar 

  • Tang J, Deng R, Luo RZ, Shen GP, Cai MY, Du ZM, et al. Low expression of ULK1 is associated with operable breast cancer progression and is an adverse prognostic marker of survival for patients. Breast Cancer Res Treat. 2012;134:549–60. doi:10.1007/s10549-012-2080-y.

    Article  CAS  PubMed  Google Scholar 

  • Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 1994;349:275–80. [pii] 0014-5793(94)00672-5.

    Google Scholar 

  • Tian E, Wang F, Han J, Zhang H. epg-1 functions in autophagy-regulated processes and may encode a highly divergent Atg13 homolog in C. elegans. Autophagy. 2009;5:608–15. [pii] 8624.

    Google Scholar 

  • Tian W, Li W, Chen Y, Yan Z, Huang X, Zhuang H, et al. Phosphorylation of ULK1 by AMPK regulates translocation of ULK1 to mitochondria and mitophagy. FEBS Lett. 2015;589:1847–54. doi:10.1016/j.febslet.2015.05.020.

    Article  CAS  PubMed  Google Scholar 

  • Toda H, Mochizuki H, Flores R, 3rd, Josowitz R, Krasieva TB, Lamorte VJ, et al. UNC-51/ATG1 kinase regulates axonal transport by mediating motor-cargo assembly. Genes Dev. 2008;22:3292–307. doi:10.1101/gad.1734608. [pii] 22/23/3292.

    Google Scholar 

  • Tomoda T, Bhatt RS, Kuroyanagi H, Shirasawa T, Hatten ME. A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron. 1999;24:833–46. [pii] S0896-6273(00)81031-4.

    Google Scholar 

  • Tomoda T, Kim JH, Zhan C, Hatten ME. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev. 2004;18:541–58. doi:10.1101/gad.1151204. [pii] 1151204.

    Google Scholar 

  • Torii S, Yoshida T, Arakawa S, Honda S, Nakanishi A, Shimizu S. Identification of PPM1D as an essential Ulk1 phosphatase for genotoxic stress-induced autophagy. EMBO Rep. 2016;17:1552–64. doi:10.15252/embr.201642565. [pii] embr.201642565.

    Google Scholar 

  • Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993;333:169–74. [pii] 0014-5793(93)80398-E.

    Google Scholar 

  • Wang C, Liang CC, Bian ZC, Zhu Y, Guan JL. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. Nat Neurosci. 2013;16:532–42. doi:10.1038/nn.3365. [pii] nn.3365.

    Google Scholar 

  • Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 2016;35:1656–76. doi:10.15252/embj.201694401. [pii] embj.201694401.

    Google Scholar 

  • Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 2015. doi:10.1007/s00018-015-2034-8.

    Google Scholar 

  • Wolf FW, Hung MS, Wightman B, Way J, Garriga G. vab-8 is a key regulator of posteriorly directed migrations in C. elegans and encodes a novel protein with kinesin motor similarity. Neuron. 1998;20:655–66. [pii] S0896-6273(00)81006-5.

    Google Scholar 

  • Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy. 2013;9:124–37. doi:10.4161/auto.23323. [pii] 23323.

    Google Scholar 

  • Wong PM, Feng Y, Wang J, Shi R, Jiang X. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun. 2015;6:8048. doi:10.1038/ncomms9048. [pii] ncomms9048.

    Google Scholar 

  • Wu W, Tian W, Hu Z, Chen G, Huang L, Li W, et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 2014;15:566–75. doi:10.1002/embr.201438501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Yu H, Zhang X, Shen X, Zhang K, Sheng H, et al. UNC51-like kinase 1 as a potential prognostic biomarker for hepatocellular carcinoma. Int J Clin Exp Pathol. 2013;6:711–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Kuroyanagi H, Kuroiwa A, Matsuda Y, Tokumitsu H, Tomoda T, et al. Identification of mouse ULK1, a novel protein kinase structurally related to C. elegans UNC-51. Biochem Biophys Res Commun. 1998;246:222–7. [pii] S0006291X98985461.

    Google Scholar 

  • Yan J, Kuroyanagi H, Tomemori T, Okazaki N, Asato K, Matsuda Y, et al. Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains. Oncogene. 1999;18:5850–9. doi:10.1038/sj.onc.1202988.

    Article  CAS  PubMed  Google Scholar 

  • Yun M, Bai HY, Zhang JX, Rong J, Weng HW, Zheng ZS, et al. ULK1: a promising biomarker in predicting poor prognosis and therapeutic response in human nasopharyngeal carcinoma. PLoS One. 2015;10:e0117375. doi:10.1371/journal.pone.0117375. [pii] PONE-D-13-28951.

    Google Scholar 

  • Zhang HY, Ma YD, Zhang Y, Cui J, Wang ZM. Elevated levels of autophagy-related marker ULK1 and mitochondrion-associated autophagy inhibitor LRPPRC are associated with biochemical progression and overall survival after androgen deprivation therapy in patients with metastatic prostate cancer. J Clin Pathol. 2016. doi:10.1136/jclinpath-2016-203926. [pii] jclinpath-2016-203926.

    Google Scholar 

  • Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, et al. Unc-51-like kinase 1/2-mediated endocytic processes regulate filopodia extension and branching of sensory axons. Proc Natl Acad Sci U S A. 2007;104:5842–7. doi:10.1073/pnas.0701402104. [pii] 0701402104.

    Google Scholar 

  • Zou Y, Chen Z, He X, Wu X, Chen Y, Wang J, et al. High expression levels of unc-51-like kinase 1 as a predictor of poor prognosis in colorectal cancer. Oncol Lett. 2015;10:1583–8. doi:10.3892/ol.2015.3417. [pii] OL-0-0-3417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Stork .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this entry

Cite this entry

Stork, B. (2016). ULK1. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101817-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101817-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics